Solution: Primitive Calculator

Solve the Primitive Calculator Problem.

We'll cover the following...

Solution

Let calculator(n)calculator(n) be the minimum number of operations needed to get nn from 11. Since the last operation in an optimum sequence of operations is “+1+1,” “×2×2,” or “×3×3,” we get the following recurrence relation, for n1n ≥ 1:

calculator(n)=1+min{calculator(n1)calculator(n/2)amp;if   n  is divisible by  2,calculator(n/3)amp;if   n  is divisible by  3.calculator(n) = 1 + min \begin{cases} calculator(n-1) \\ calculator(n/2) & \text{if }~~ n~~ \text{is divisible by}~~ 2, \\ calculator(n/3) & \text{if }~~ n~~ \text{is divisible by}~~ 3. \end{cases}

This recurrence relation, together with the base case calculator(1)=1calculator(1) = 1 ...