How to read from and write to an excel file in OpenPyXL

Excel files are widely used for data storage and manipulation. Python provides various libraries to work with Excel files, and one popular choice is OpenPyXL. OpenPyXL is a powerful library that allows you to read from and write to Excel files effortlessly. In this article, we will explore the basic steps to read from and write to an Excel file using OpenPyXL.

Installing OpenPyXL

Before we start, make sure you have OpenPyXL installed on your Python environment. You can install it using pip by running the following command:

pip install openpyxl
Command to install OpenPyXL

Note: We have provided three sections, one for reading the data from the excel and second one is for writing the data to the excel file, in order to explore the openpyxl library without installing that on your local system.

Reading from an Excel File

To read from an Excel file, you need to create an instance of the load_workbook class from OpenPyXL. After that, you can simply navigate to the specific cell from where you want to read the data.

In order to read multiple cells, you can use Python loops.

Here's a simple example that demonstrates how to read data from an existing Excel file:

import openpyxl
# Load the workbook
workbook = openpyxl.load_workbook("employees.xlsx")
# Identify active worksheet
sheet = workbook.active
# Identify the cell
c = sheet.cell (row = 2, column = 1)
# Access cell value
print (c.value)
Code to fetch the cell value from excel

Here's a quick demonstration of how the employees.xlsx file looks like:

employees.xlsx

Name

Email

John

john@educative.io

You can also fetch the maximum number of rows and columns in the excel file using the following code:

# Identify maximum rows count
print (sheet.max_row)
# Identify maximum columns count
print (sheet.max_column)
Code to fetch the maximum number of rows and columns in the excel sheet

Try it yourself

Let's see a working example of reading from an Excel file. Execute the following code by clicking the "Run" button:

UEsDBBQACAgIAB0Z51YAAAAAAAAAAAAAAAAYAAAAeGwvZHJhd2luZ3MvZHJhd2luZzEueG1sndBdbsIwDAfwE+wOVd5pWhgTQxRe0E4wDuAlbhuRj8oOo9x+0Uo2aXsBHm3LP/nvzW50tvhEYhN8I+qyEgV6FbTxXSMO72+zlSg4gtdgg8dGXJDFbvu0GTWtz7ynIu17XqeyEX2Mw1pKVj064DIM6NO0DeQgppI6qQnOSXZWzqvqRfJACJp7xLifJuLqwQOaA+Pz/k3XhLY1CvdBnRz6OCGEFmL6Bfdm4KypB65RPVD8AcZ/gjOKAoc2liq46ynZSEL9PAk4/hr13chSvsrVX8jdFMcBHU/DLLlDesiHsSZevpNlRnfugbdoAx2By8i4OPjj3bEqyTa1KCtssV7ercyzIrdfUEsHCAdiaYMFAQAABwMAAFBLAwQUAAgICAAdGedWAAAAAAAAAAAAAAAAGAAAAHhsL3dvcmtzaGVldHMvc2hlZXQxLnhtbJ2Uy26jMBSGn2DeAXkfDLTpBQHVtFXV7qpqOrN2jQlWfEG2ueTteyDUSsIGzc4+/Ofzp2OL7GGQIuiYsVyrHMVhhAKmqC652uXo88/L5g4F1hFVEqEVy9GBWfRQ/Mp6bfa2ZswFAFA2R7VzTYqxpTWTxIa6YQq+VNpI4mBrdtg2hpFyapICJ1F0gyXhCh0JqVnD0FXFKXvWtJVMuSPEMEEc6NuaN/aHJocFTnJqtNWVC6mWMwkMKGYDZZPQ3ZmQpGuMJDH7ttkAsgGLLy64O0xeHtPlqDUqnRkbrzH2pHB+2knxEx7i63Xei2He4/sz+yHe/h8pjnAcX6CuyXIW67UI9SS5DuNvZH4iRTYh302R6dYJrti7CWwrYfiHRyZ0nyN4uHPhg+9qNxZwkWHfNy3+ctbbk3UwPuMvrffj5q08azrNvkwXDmfS1jotX9nxiBgFJatIK9yTFv946WqoJeHNla9/6N6Ht+HtdsRPxGfiSJEZ3Qdm5BQZHRe/gWgnLjRYqHZFlOEOlOiceFwmYp/AwPPQxEOTRUtyAV0mri6g+MS6NKSH/0NgUg4jM29lPE3N/xKKb1BLBwgH6tj1tgEAAFYEAABQSwMEFAAICAgAHRnnVgAAAAAAAAAAAAAAACMAAAB4bC93b3Jrc2hlZXRzL19yZWxzL3NoZWV0MS54bWwucmVsc43PSwrCMBAG4BN4hzB7k9aFiDTtRoRupR5gSKYPbB4k8dHbm42i4MLlzM98w181DzOzG4U4OSuh5AUwssrpyQ4Szt1xvQMWE1qNs7MkYaEITb2qTjRjyjdxnHxkGbFRwpiS3wsR1UgGI3eebE56FwymPIZBeFQXHEhsimIrwqcB9ZfJWi0htLoE1i2e/rFd30+KDk5dDdn044XQAe+5WCYxDJQkcP7avcOSZxZEXYmvivUTUEsHCK2o602zAAAAKgEAAFBLAwQUAAgICAAdGedWAAAAAAAAAAAAAAAAEwAAAHhsL3RoZW1lL3RoZW1lMS54bWzNV9tu3CAQ/YL+A+K9wde9KbtRsptVH1pV6rbqM7HxpcHYAjZp/r4Ye218S6JmI2VfAuMzhzMzwJDLq78ZBQ+EizRna2hfWBAQFuRhyuI1/PVz/3kBgZCYhZjmjKzhExHwavPpEq9kQjIClDsTK7yGiZTFCiERKDMWF3lBmPoW5TzDUk15jEKOHxVtRpFjWTOU4ZTB2p+/xj+PojQguzw4ZoTJioQTiqWSLpK0EBAwnCmNh4QQKeDmJPKWktJDlIaA8kOglQ+w4b1d/hE8vttSDh4wXUNL/yDaXKIGQOUQt9e/GlcDwnvnJT6n4hvienwagINARTFc23MW/t6rsQaoGg65b6891/U7eIPfHWq5udlaXX63xXsDvOtdL3y3g/davD8S62xn2R283+Jnw3hnN7vtrIPXoISm7H6Atm3f325rdAOJcvrlZXiLQsbOqfyZnNpHGf6T870C6OKq7cmAfCpIhAOFu+YppiU9XhE8bg/EmB31iLOUvdMqLTEyA9VhZ92ov+sjqaOOUkoP8omSr0JLEjlNw70y6ol2apJcJGpYL9fBxRzrMeC5/J3K5JDgQi1j6xViUVPHAhS5UIcJTnLrpByzb3l4Kuvp3CkHLFu75Td2lUJZWWfz9pA29HoWC1OAr0lfL8JYrCvCHRExd18nwrbOpWI5omJhP6cCGVVRBwXgsmv4XqUIiABTEpZ1qvxP1T17paeS2Q3bGQlv6Z2t0h0RxnbrijC2YYJD0jefudbL5XipnVEZ88V71BoN7wbKujPwqM6c6yuaABdrGKnrTA2zQvEJFkOAaaweJ4GsE/0/N0vBhdxhkVQw/amKP0sl4YCmmdrrZhkoa7XZztz6uOKW1sfLHOoXmUQRCeSEpZ2qbxXJ6Nc3gstJflSiD0n4CO7okf/AKlH+3C4TGKZCNtkMU25s7jaLveuqPoojLzz9gKFFguuOYl7mFVyPGzlGHFppPyo0lsK7eH+OrvuyU+/SnGgg88lb7P2avKHKHVflj951y4X1fJd4e0MwpC3Gpbnj0qZ6xxkfBMZys4m8OZPVfGM36O9aZLwr9az3T9vJsvkHUEsHCGWjgWEoAwAArQ4AAFBLAwQUAAgICAAdGedWAAAAAAAAAAAAAAAAFAAAAHhsL3NoYXJlZFN0cmluZ3MueG1sXY5BCsIwEEVP4B3C7G2qiIgkURBduHClBwjtaCPNpHamorc3IiK4fO//D9+sHrFVd+w5JLIwKUpQSFWqA10snI678QIUi6fat4nQwhMZVm5kmEXlKbGFRqRbas1Vg9FzkTqknJxTH71k7C+aux59zQ2ixFZPy3Kuow8EqkoDiYUZqIHCbcDNl53h4Iy4g49otDij3/xx27xt/+U+NfTvrtmtsR4qL+GORUi/gs7/3QtQSwcILYxdpLAAAAD9AAAAUEsDBBQACAgIAB0Z51YAAAAAAAAAAAAAAAANAAAAeGwvc3R5bGVzLnhtbLVUwW7cIBD9gv4D4p7Fu4qqJrId5eKol/aQrdQrxrBGAcYCNrX79R2M3d3VRmoUqT7YzJvhvRlmcPkwWkNepQ8aXEW3m4IS6QR02h0q+mPf3HyhJETuOm7AyYpOMtCH+lMZ4mTkcy9lJMjgQkX7GId7xoLopeVhA4N06FHgLY9o+gMLg5e8C2mTNWxXFJ+Z5drRzHA/bm+5uOKxWngIoOJGgGWglBbymumO3TEuViZ7TfNGOpb7l+Nwg7QDj7rVRsdpzorWpQIXAxFwdLGiuwWoy/CbvHKD51TgQbG6FGDAE39oK9o0xfwk2HErc+Cj19wkaM5jAa124BPIMmt+Z66YwlDgAzTzJyCdNuYydwTqEouM0rsGDbKs99OAWg4bm2nmuH9EG33o45Pn09mW+YPKLfgOR2nV3tIVSqGLEwuVxjyn8fmpLkJHRXLM166iOIeJdF1iZcvSHW1jV4MPg5keMSVnZabJUAPZSrrncln8THf3Md1RvTOBuuSrk6SRxWv1PUnNm0PvtXvZQ6PjbOM1jFqk1rYQI1hKfnk+7OU4u1Mto3pXutv/ke6qz5YjPGvkRRv/oifZNMgV/ZbunqGkPWoTtcu+iw4hZzeempO9pz9N/QdQSwcIsjqyvNUBAACuBAAAUEsDBBQACAgIAB0Z51YAAAAAAAAAAAAAAAAPAAAAeGwvd29ya2Jvb2sueG1snZJLbsIwEIZP0DtE3oNjRCuISNhUldhUldoewNgTYuFHZJs03L6TkESibKKu/JxvPtn/bt8anTTgg3I2J2yZkgSscFLZU06+v94WG5KEyK3k2lnIyRUC2RdPux/nz0fnzgnW25CTKsY6ozSICgwPS1eDxZPSecMjLv2JhtoDl6ECiEbTVZq+UMOVJTdC5ucwXFkqAa9OXAzYeIN40DyifahUHUaaaR9wRgnvgivjUjgzkNBAUGgF9EKbOyEj5hgZ7s+XeoHIGi2OSqt47b0mTJOTi7fZwFhMGl1Nhv2zxujxcsvW87wfHnNLt3f2LXv+H4mllLE/qDV/fIv5WlxMJDMPM/3IEJFiituHp8Wu54dh7NIZMZiNCuqogSSWG1x+dmcMs9uNB4nRJonPFE78Qa4JUuiIkVAqC/Id6wLuC65F34aOTYtfUEsHCE3Koq1HAQAAJgMAAFBLAwQUAAgICAAdGedWAAAAAAAAAAAAAAAAGgAAAHhsL19yZWxzL3dvcmtib29rLnhtbC5yZWxzrZJBasMwEEVP0DuI2deyk1JKiZxNKGTbpgcQ0tgysSUhTdr69p024DoQQhdeif/F/P/QaLP9GnrxgSl3wSuoihIEehNs51sF74eX+ycQmbS3ug8eFYyYYVvfbV6x18Qz2XUxCw7xWYEjis9SZuNw0LkIET3fNCENmlimVkZtjrpFuSrLR5nmGVBfZIq9VZD2tgJxGCP+Jzs0TWdwF8xpQE9XKiTxLHKgTi2Sgl95NquCw0BeZ1gtyZBp7PkNJ4izvlW/XrTe6YT2jRIveE4xt2/BPCwJ8xnSMTtE+gOZrB9UPqbFyIsfV38DUEsHCJYZwVPqAAAAuQIAAFBLAwQUAAgICAAdGedWAAAAAAAAAAAAAAAACwAAAF9yZWxzLy5yZWxzjc9BDoIwEAXQE3iHZvZScGGMobAxJmwNHqC2QyFAp2mrwu3tUo0Ll5P5836mrJd5Yg/0YSAroMhyYGgV6cEaAdf2vD0AC1FaLSeyKGDFAHW1KS84yZhuQj+4wBJig4A+RnfkPKgeZxkycmjTpiM/y5hGb7iTapQG+S7P99y/G1B9mKzRAnyjC2Dt6vAfm7puUHgidZ/Rxh8VX4kkS28wClgm/iQ/3ojGLKHAq5J/PFi9AFBLBwikb6EgsgAAACgBAABQSwMEFAAICAgAHRnnVgAAAAAAAAAAAAAAABMAAABbQ29udGVudF9UeXBlc10ueG1stVPLTsMwEPwC/iHyFTVuOSCEmvbA4whIlA9Y7E1j1S953dffs0laJKoggdRevLbHOzPrtafznbPFBhOZ4CsxKceiQK+CNn5ZiY/F8+hOFJTBa7DBYyX2SGI+u5ou9hGp4GRPlWhyjvdSkmrQAZUhomekDslB5mVayghqBUuUN+PxrVTBZ/R5lFsOMZs+Yg1rm4uHfr+lrgTEaI2CzL4kk4niacdgb7Ndyz/kbbw+MTM6GCkT2u4MNSbS9akAo9QqvPLNJKPxXxKhro1CHdTacUpJMSFoahCzs+U2pFU37zXfIOUXcEwqd1Z+gyS7MCkPlZ7fBzWQUL/nxI2mIS8/DpzTh06wZc4hzQNEx8kl6897i8OFd8g5lTN/CxyS6oB+vGirOZYOjP/tzX2GsDrqy+5nz74AUEsHCG2ItFA1AQAAGQQAAFBLAQIUABQACAgIAB0Z51YHYmmDBQEAAAcDAAAYAAAAAAAAAAAAAAAAAAAAAAB4bC9kcmF3aW5ncy9kcmF3aW5nMS54bWxQSwECFAAUAAgICAAdGedWB+rY9bYBAABWBAAAGAAAAAAAAAAAAAAAAABLAQAAeGwvd29ya3NoZWV0cy9zaGVldDEueG1sUEsBAhQAFAAICAgAHRnnVq2o602zAAAAKgEAACMAAAAAAAAAAAAAAAAARwMAAHhsL3dvcmtzaGVldHMvX3JlbHMvc2hlZXQxLnhtbC5yZWxzUEsBAhQAFAAICAgAHRnnVmWjgWEoAwAArQ4AABMAAAAAAAAAAAAAAAAASwQAAHhsL3RoZW1lL3RoZW1lMS54bWxQSwECFAAUAAgICAAdGedWLYxdpLAAAAD9AAAAFAAAAAAAAAAAAAAAAAC0BwAAeGwvc2hhcmVkU3RyaW5ncy54bWxQSwECFAAUAAgICAAdGedWsjqyvNUBAACuBAAADQAAAAAAAAAAAAAAAACmCAAAeGwvc3R5bGVzLnhtbFBLAQIUABQACAgIAB0Z51ZNyqKtRwEAACYDAAAPAAAAAAAAAAAAAAAAALYKAAB4bC93b3JrYm9vay54bWxQSwECFAAUAAgICAAdGedWlhnBU+oAAAC5AgAAGgAAAAAAAAAAAAAAAAA6DAAAeGwvX3JlbHMvd29ya2Jvb2sueG1sLnJlbHNQSwECFAAUAAgICAAdGedWpG+hILIAAAAoAQAACwAAAAAAAAAAAAAAAABsDQAAX3JlbHMvLnJlbHNQSwECFAAUAAgICAAdGedWbYi0UDUBAAAZBAAAEwAAAAAAAAAAAAAAAABXDgAAW0NvbnRlbnRfVHlwZXNdLnhtbFBLBQYAAAAACgAKAJoCAADNDwAAAAA=
Reading from the excel file

Writing to an Excel File

To write to an Excel file, you need to create an instance of the Workbook class from OpenPyXL. Here's a simple example that demonstrates how to create a new Excel file and write data to it:

from openpyxl import Workbook
# Create a new workbook
workbook = Workbook()
# Select a specific sheet
sheet = workbook.active
# Write data to cells
sheet['A1'] = 'Hello'
sheet['B1'] = 'World'
# Save the workbook
workbook.save('new_file.xlsx')
Code to create a new excel file

In the above code, we create a new workbook using Workbook and access the active sheet. Then, we write data to specific cells by assigning values to them. Finally, we save the workbook to a new Excel file using the save method.

Try it yourself

Let's see a working example of writing to an Excel file. Execute the following code by clicking the "Run" button:

UEsDBBQACAgIAB0Z51YAAAAAAAAAAAAAAAAYAAAAeGwvZHJhd2luZ3MvZHJhd2luZzEueG1sndBdbsIwDAfwE+wOVd5pWhgTQxRe0E4wDuAlbhuRj8oOo9x+0Uo2aXsBHm3LP/nvzW50tvhEYhN8I+qyEgV6FbTxXSMO72+zlSg4gtdgg8dGXJDFbvu0GTWtz7ynIu17XqeyEX2Mw1pKVj064DIM6NO0DeQgppI6qQnOSXZWzqvqRfJACJp7xLifJuLqwQOaA+Pz/k3XhLY1CvdBnRz6OCGEFmL6Bfdm4KypB65RPVD8AcZ/gjOKAoc2liq46ynZSEL9PAk4/hr13chSvsrVX8jdFMcBHU/DLLlDesiHsSZevpNlRnfugbdoAx2By8i4OPjj3bEqyTa1KCtssV7ercyzIrdfUEsHCAdiaYMFAQAABwMAAFBLAwQUAAgICAAdGedWAAAAAAAAAAAAAAAAGAAAAHhsL3dvcmtzaGVldHMvc2hlZXQxLnhtbJ2Uy26jMBSGn2DeAXkfDLTpBQHVtFXV7qpqOrN2jQlWfEG2ueTteyDUSsIGzc4+/Ofzp2OL7GGQIuiYsVyrHMVhhAKmqC652uXo88/L5g4F1hFVEqEVy9GBWfRQ/Mp6bfa2ZswFAFA2R7VzTYqxpTWTxIa6YQq+VNpI4mBrdtg2hpFyapICJ1F0gyXhCh0JqVnD0FXFKXvWtJVMuSPEMEEc6NuaN/aHJocFTnJqtNWVC6mWMwkMKGYDZZPQ3ZmQpGuMJDH7ttkAsgGLLy64O0xeHtPlqDUqnRkbrzH2pHB+2knxEx7i63Xei2He4/sz+yHe/h8pjnAcX6CuyXIW67UI9SS5DuNvZH4iRTYh302R6dYJrti7CWwrYfiHRyZ0nyN4uHPhg+9qNxZwkWHfNy3+ctbbk3UwPuMvrffj5q08azrNvkwXDmfS1jotX9nxiBgFJatIK9yTFv946WqoJeHNla9/6N6Ht+HtdsRPxGfiSJEZ3Qdm5BQZHRe/gWgnLjRYqHZFlOEOlOiceFwmYp/AwPPQxEOTRUtyAV0mri6g+MS6NKSH/0NgUg4jM29lPE3N/xKKb1BLBwgH6tj1tgEAAFYEAABQSwMEFAAICAgAHRnnVgAAAAAAAAAAAAAAACMAAAB4bC93b3Jrc2hlZXRzL19yZWxzL3NoZWV0MS54bWwucmVsc43PSwrCMBAG4BN4hzB7k9aFiDTtRoRupR5gSKYPbB4k8dHbm42i4MLlzM98w181DzOzG4U4OSuh5AUwssrpyQ4Szt1xvQMWE1qNs7MkYaEITb2qTjRjyjdxnHxkGbFRwpiS3wsR1UgGI3eebE56FwymPIZBeFQXHEhsimIrwqcB9ZfJWi0htLoE1i2e/rFd30+KDk5dDdn044XQAe+5WCYxDJQkcP7avcOSZxZEXYmvivUTUEsHCK2o602zAAAAKgEAAFBLAwQUAAgICAAdGedWAAAAAAAAAAAAAAAAEwAAAHhsL3RoZW1lL3RoZW1lMS54bWzNV9tu3CAQ/YL+A+K9wde9KbtRsptVH1pV6rbqM7HxpcHYAjZp/r4Ye218S6JmI2VfAuMzhzMzwJDLq78ZBQ+EizRna2hfWBAQFuRhyuI1/PVz/3kBgZCYhZjmjKzhExHwavPpEq9kQjIClDsTK7yGiZTFCiERKDMWF3lBmPoW5TzDUk15jEKOHxVtRpFjWTOU4ZTB2p+/xj+PojQguzw4ZoTJioQTiqWSLpK0EBAwnCmNh4QQKeDmJPKWktJDlIaA8kOglQ+w4b1d/hE8vttSDh4wXUNL/yDaXKIGQOUQt9e/GlcDwnvnJT6n4hvienwagINARTFc23MW/t6rsQaoGg65b6891/U7eIPfHWq5udlaXX63xXsDvOtdL3y3g/davD8S62xn2R283+Jnw3hnN7vtrIPXoISm7H6Atm3f325rdAOJcvrlZXiLQsbOqfyZnNpHGf6T870C6OKq7cmAfCpIhAOFu+YppiU9XhE8bg/EmB31iLOUvdMqLTEyA9VhZ92ov+sjqaOOUkoP8omSr0JLEjlNw70y6ol2apJcJGpYL9fBxRzrMeC5/J3K5JDgQi1j6xViUVPHAhS5UIcJTnLrpByzb3l4Kuvp3CkHLFu75Td2lUJZWWfz9pA29HoWC1OAr0lfL8JYrCvCHRExd18nwrbOpWI5omJhP6cCGVVRBwXgsmv4XqUIiABTEpZ1qvxP1T17paeS2Q3bGQlv6Z2t0h0RxnbrijC2YYJD0jefudbL5XipnVEZ88V71BoN7wbKujPwqM6c6yuaABdrGKnrTA2zQvEJFkOAaaweJ4GsE/0/N0vBhdxhkVQw/amKP0sl4YCmmdrrZhkoa7XZztz6uOKW1sfLHOoXmUQRCeSEpZ2qbxXJ6Nc3gstJflSiD0n4CO7okf/AKlH+3C4TGKZCNtkMU25s7jaLveuqPoojLzz9gKFFguuOYl7mFVyPGzlGHFppPyo0lsK7eH+OrvuyU+/SnGgg88lb7P2avKHKHVflj951y4X1fJd4e0MwpC3Gpbnj0qZ6xxkfBMZys4m8OZPVfGM36O9aZLwr9az3T9vJsvkHUEsHCGWjgWEoAwAArQ4AAFBLAwQUAAgICAAdGedWAAAAAAAAAAAAAAAAFAAAAHhsL3NoYXJlZFN0cmluZ3MueG1sXY5BCsIwEEVP4B3C7G2qiIgkURBduHClBwjtaCPNpHamorc3IiK4fO//D9+sHrFVd+w5JLIwKUpQSFWqA10snI678QIUi6fat4nQwhMZVm5kmEXlKbGFRqRbas1Vg9FzkTqknJxTH71k7C+aux59zQ2ixFZPy3Kuow8EqkoDiYUZqIHCbcDNl53h4Iy4g49otDij3/xx27xt/+U+NfTvrtmtsR4qL+GORUi/gs7/3QtQSwcILYxdpLAAAAD9AAAAUEsDBBQACAgIAB0Z51YAAAAAAAAAAAAAAAANAAAAeGwvc3R5bGVzLnhtbLVUwW7cIBD9gv4D4p7Fu4qqJrId5eKol/aQrdQrxrBGAcYCNrX79R2M3d3VRmoUqT7YzJvhvRlmcPkwWkNepQ8aXEW3m4IS6QR02h0q+mPf3HyhJETuOm7AyYpOMtCH+lMZ4mTkcy9lJMjgQkX7GId7xoLopeVhA4N06FHgLY9o+gMLg5e8C2mTNWxXFJ+Z5drRzHA/bm+5uOKxWngIoOJGgGWglBbymumO3TEuViZ7TfNGOpb7l+Nwg7QDj7rVRsdpzorWpQIXAxFwdLGiuwWoy/CbvHKD51TgQbG6FGDAE39oK9o0xfwk2HErc+Cj19wkaM5jAa124BPIMmt+Z66YwlDgAzTzJyCdNuYydwTqEouM0rsGDbKs99OAWg4bm2nmuH9EG33o45Pn09mW+YPKLfgOR2nV3tIVSqGLEwuVxjyn8fmpLkJHRXLM166iOIeJdF1iZcvSHW1jV4MPg5keMSVnZabJUAPZSrrncln8THf3Md1RvTOBuuSrk6SRxWv1PUnNm0PvtXvZQ6PjbOM1jFqk1rYQI1hKfnk+7OU4u1Mto3pXutv/ke6qz5YjPGvkRRv/oifZNMgV/ZbunqGkPWoTtcu+iw4hZzeempO9pz9N/QdQSwcIsjqyvNUBAACuBAAAUEsDBBQACAgIAB0Z51YAAAAAAAAAAAAAAAAPAAAAeGwvd29ya2Jvb2sueG1snZJLbsIwEIZP0DtE3oNjRCuISNhUldhUldoewNgTYuFHZJs03L6TkESibKKu/JxvPtn/bt8anTTgg3I2J2yZkgSscFLZU06+v94WG5KEyK3k2lnIyRUC2RdPux/nz0fnzgnW25CTKsY6ozSICgwPS1eDxZPSecMjLv2JhtoDl6ECiEbTVZq+UMOVJTdC5ucwXFkqAa9OXAzYeIN40DyifahUHUaaaR9wRgnvgivjUjgzkNBAUGgF9EKbOyEj5hgZ7s+XeoHIGi2OSqt47b0mTJOTi7fZwFhMGl1Nhv2zxujxcsvW87wfHnNLt3f2LXv+H4mllLE/qDV/fIv5WlxMJDMPM/3IEJFiituHp8Wu54dh7NIZMZiNCuqogSSWG1x+dmcMs9uNB4nRJonPFE78Qa4JUuiIkVAqC/Id6wLuC65F34aOTYtfUEsHCE3Koq1HAQAAJgMAAFBLAwQUAAgICAAdGedWAAAAAAAAAAAAAAAAGgAAAHhsL19yZWxzL3dvcmtib29rLnhtbC5yZWxzrZJBasMwEEVP0DuI2deyk1JKiZxNKGTbpgcQ0tgysSUhTdr69p024DoQQhdeif/F/P/QaLP9GnrxgSl3wSuoihIEehNs51sF74eX+ycQmbS3ug8eFYyYYVvfbV6x18Qz2XUxCw7xWYEjis9SZuNw0LkIET3fNCENmlimVkZtjrpFuSrLR5nmGVBfZIq9VZD2tgJxGCP+Jzs0TWdwF8xpQE9XKiTxLHKgTi2Sgl95NquCw0BeZ1gtyZBp7PkNJ4izvlW/XrTe6YT2jRIveE4xt2/BPCwJ8xnSMTtE+gOZrB9UPqbFyIsfV38DUEsHCJYZwVPqAAAAuQIAAFBLAwQUAAgICAAdGedWAAAAAAAAAAAAAAAACwAAAF9yZWxzLy5yZWxzjc9BDoIwEAXQE3iHZvZScGGMobAxJmwNHqC2QyFAp2mrwu3tUo0Ll5P5836mrJd5Yg/0YSAroMhyYGgV6cEaAdf2vD0AC1FaLSeyKGDFAHW1KS84yZhuQj+4wBJig4A+RnfkPKgeZxkycmjTpiM/y5hGb7iTapQG+S7P99y/G1B9mKzRAnyjC2Dt6vAfm7puUHgidZ/Rxh8VX4kkS28wClgm/iQ/3ojGLKHAq5J/PFi9AFBLBwikb6EgsgAAACgBAABQSwMEFAAICAgAHRnnVgAAAAAAAAAAAAAAABMAAABbQ29udGVudF9UeXBlc10ueG1stVPLTsMwEPwC/iHyFTVuOSCEmvbA4whIlA9Y7E1j1S953dffs0laJKoggdRevLbHOzPrtafznbPFBhOZ4CsxKceiQK+CNn5ZiY/F8+hOFJTBa7DBYyX2SGI+u5ou9hGp4GRPlWhyjvdSkmrQAZUhomekDslB5mVayghqBUuUN+PxrVTBZ/R5lFsOMZs+Yg1rm4uHfr+lrgTEaI2CzL4kk4niacdgb7Ndyz/kbbw+MTM6GCkT2u4MNSbS9akAo9QqvPLNJKPxXxKhro1CHdTacUpJMSFoahCzs+U2pFU37zXfIOUXcEwqd1Z+gyS7MCkPlZ7fBzWQUL/nxI2mIS8/DpzTh06wZc4hzQNEx8kl6897i8OFd8g5lTN/CxyS6oB+vGirOZYOjP/tzX2GsDrqy+5nz74AUEsHCG2ItFA1AQAAGQQAAFBLAQIUABQACAgIAB0Z51YHYmmDBQEAAAcDAAAYAAAAAAAAAAAAAAAAAAAAAAB4bC9kcmF3aW5ncy9kcmF3aW5nMS54bWxQSwECFAAUAAgICAAdGedWB+rY9bYBAABWBAAAGAAAAAAAAAAAAAAAAABLAQAAeGwvd29ya3NoZWV0cy9zaGVldDEueG1sUEsBAhQAFAAICAgAHRnnVq2o602zAAAAKgEAACMAAAAAAAAAAAAAAAAARwMAAHhsL3dvcmtzaGVldHMvX3JlbHMvc2hlZXQxLnhtbC5yZWxzUEsBAhQAFAAICAgAHRnnVmWjgWEoAwAArQ4AABMAAAAAAAAAAAAAAAAASwQAAHhsL3RoZW1lL3RoZW1lMS54bWxQSwECFAAUAAgICAAdGedWLYxdpLAAAAD9AAAAFAAAAAAAAAAAAAAAAAC0BwAAeGwvc2hhcmVkU3RyaW5ncy54bWxQSwECFAAUAAgICAAdGedWsjqyvNUBAACuBAAADQAAAAAAAAAAAAAAAACmCAAAeGwvc3R5bGVzLnhtbFBLAQIUABQACAgIAB0Z51ZNyqKtRwEAACYDAAAPAAAAAAAAAAAAAAAAALYKAAB4bC93b3JrYm9vay54bWxQSwECFAAUAAgICAAdGedWlhnBU+oAAAC5AgAAGgAAAAAAAAAAAAAAAAA6DAAAeGwvX3JlbHMvd29ya2Jvb2sueG1sLnJlbHNQSwECFAAUAAgICAAdGedWpG+hILIAAAAoAQAACwAAAAAAAAAAAAAAAABsDQAAX3JlbHMvLnJlbHNQSwECFAAUAAgICAAdGedWbYi0UDUBAAAZBAAAEwAAAAAAAAAAAAAAAABXDgAAW0NvbnRlbnRfVHlwZXNdLnhtbFBLBQYAAAAACgAKAJoCAADNDwAAAAA=
Reading from the excel file

Modifying existing Excel files

If you want to modify an existing Excel file, you can load it using load_workbook and manipulate its content. Here's an example that demonstrates how to update the value of a cell in an existing Excel file:

from openpyxl import load_workbook
# Load the workbook
workbook = load_workbook('employees.xlsx')
# Select a specific sheet
sheet = workbook.active
# Update cell value
sheet['A1'] = 'New Value'
# Save the workbook
workbook.save('employees.xlsx')
Code to update the existing excel file

In the above code, we load the existing Excel file, update the value of a specific cell (A1 in this case), and save the modified workbook back to the same file.

Try it yourself

Let's see a working example of modifying existing Excel files. Execute the following code by clicking the "Run" button:

UEsDBBQACAgIAB0Z51YAAAAAAAAAAAAAAAAYAAAAeGwvZHJhd2luZ3MvZHJhd2luZzEueG1sndBdbsIwDAfwE+wOVd5pWhgTQxRe0E4wDuAlbhuRj8oOo9x+0Uo2aXsBHm3LP/nvzW50tvhEYhN8I+qyEgV6FbTxXSMO72+zlSg4gtdgg8dGXJDFbvu0GTWtz7ynIu17XqeyEX2Mw1pKVj064DIM6NO0DeQgppI6qQnOSXZWzqvqRfJACJp7xLifJuLqwQOaA+Pz/k3XhLY1CvdBnRz6OCGEFmL6Bfdm4KypB65RPVD8AcZ/gjOKAoc2liq46ynZSEL9PAk4/hr13chSvsrVX8jdFMcBHU/DLLlDesiHsSZevpNlRnfugbdoAx2By8i4OPjj3bEqyTa1KCtssV7ercyzIrdfUEsHCAdiaYMFAQAABwMAAFBLAwQUAAgICAAdGedWAAAAAAAAAAAAAAAAGAAAAHhsL3dvcmtzaGVldHMvc2hlZXQxLnhtbJ2Uy26jMBSGn2DeAXkfDLTpBQHVtFXV7qpqOrN2jQlWfEG2ueTteyDUSsIGzc4+/Ofzp2OL7GGQIuiYsVyrHMVhhAKmqC652uXo88/L5g4F1hFVEqEVy9GBWfRQ/Mp6bfa2ZswFAFA2R7VzTYqxpTWTxIa6YQq+VNpI4mBrdtg2hpFyapICJ1F0gyXhCh0JqVnD0FXFKXvWtJVMuSPEMEEc6NuaN/aHJocFTnJqtNWVC6mWMwkMKGYDZZPQ3ZmQpGuMJDH7ttkAsgGLLy64O0xeHtPlqDUqnRkbrzH2pHB+2knxEx7i63Xei2He4/sz+yHe/h8pjnAcX6CuyXIW67UI9SS5DuNvZH4iRTYh302R6dYJrti7CWwrYfiHRyZ0nyN4uHPhg+9qNxZwkWHfNy3+ctbbk3UwPuMvrffj5q08azrNvkwXDmfS1jotX9nxiBgFJatIK9yTFv946WqoJeHNla9/6N6Ht+HtdsRPxGfiSJEZ3Qdm5BQZHRe/gWgnLjRYqHZFlOEOlOiceFwmYp/AwPPQxEOTRUtyAV0mri6g+MS6NKSH/0NgUg4jM29lPE3N/xKKb1BLBwgH6tj1tgEAAFYEAABQSwMEFAAICAgAHRnnVgAAAAAAAAAAAAAAACMAAAB4bC93b3Jrc2hlZXRzL19yZWxzL3NoZWV0MS54bWwucmVsc43PSwrCMBAG4BN4hzB7k9aFiDTtRoRupR5gSKYPbB4k8dHbm42i4MLlzM98w181DzOzG4U4OSuh5AUwssrpyQ4Szt1xvQMWE1qNs7MkYaEITb2qTjRjyjdxnHxkGbFRwpiS3wsR1UgGI3eebE56FwymPIZBeFQXHEhsimIrwqcB9ZfJWi0htLoE1i2e/rFd30+KDk5dDdn044XQAe+5WCYxDJQkcP7avcOSZxZEXYmvivUTUEsHCK2o602zAAAAKgEAAFBLAwQUAAgICAAdGedWAAAAAAAAAAAAAAAAEwAAAHhsL3RoZW1lL3RoZW1lMS54bWzNV9tu3CAQ/YL+A+K9wde9KbtRsptVH1pV6rbqM7HxpcHYAjZp/r4Ye218S6JmI2VfAuMzhzMzwJDLq78ZBQ+EizRna2hfWBAQFuRhyuI1/PVz/3kBgZCYhZjmjKzhExHwavPpEq9kQjIClDsTK7yGiZTFCiERKDMWF3lBmPoW5TzDUk15jEKOHxVtRpFjWTOU4ZTB2p+/xj+PojQguzw4ZoTJioQTiqWSLpK0EBAwnCmNh4QQKeDmJPKWktJDlIaA8kOglQ+w4b1d/hE8vttSDh4wXUNL/yDaXKIGQOUQt9e/GlcDwnvnJT6n4hvienwagINARTFc23MW/t6rsQaoGg65b6891/U7eIPfHWq5udlaXX63xXsDvOtdL3y3g/davD8S62xn2R283+Jnw3hnN7vtrIPXoISm7H6Atm3f325rdAOJcvrlZXiLQsbOqfyZnNpHGf6T870C6OKq7cmAfCpIhAOFu+YppiU9XhE8bg/EmB31iLOUvdMqLTEyA9VhZ92ov+sjqaOOUkoP8omSr0JLEjlNw70y6ol2apJcJGpYL9fBxRzrMeC5/J3K5JDgQi1j6xViUVPHAhS5UIcJTnLrpByzb3l4Kuvp3CkHLFu75Td2lUJZWWfz9pA29HoWC1OAr0lfL8JYrCvCHRExd18nwrbOpWI5omJhP6cCGVVRBwXgsmv4XqUIiABTEpZ1qvxP1T17paeS2Q3bGQlv6Z2t0h0RxnbrijC2YYJD0jefudbL5XipnVEZ88V71BoN7wbKujPwqM6c6yuaABdrGKnrTA2zQvEJFkOAaaweJ4GsE/0/N0vBhdxhkVQw/amKP0sl4YCmmdrrZhkoa7XZztz6uOKW1sfLHOoXmUQRCeSEpZ2qbxXJ6Nc3gstJflSiD0n4CO7okf/AKlH+3C4TGKZCNtkMU25s7jaLveuqPoojLzz9gKFFguuOYl7mFVyPGzlGHFppPyo0lsK7eH+OrvuyU+/SnGgg88lb7P2avKHKHVflj951y4X1fJd4e0MwpC3Gpbnj0qZ6xxkfBMZys4m8OZPVfGM36O9aZLwr9az3T9vJsvkHUEsHCGWjgWEoAwAArQ4AAFBLAwQUAAgICAAdGedWAAAAAAAAAAAAAAAAFAAAAHhsL3NoYXJlZFN0cmluZ3MueG1sXY5BCsIwEEVP4B3C7G2qiIgkURBduHClBwjtaCPNpHamorc3IiK4fO//D9+sHrFVd+w5JLIwKUpQSFWqA10snI678QIUi6fat4nQwhMZVm5kmEXlKbGFRqRbas1Vg9FzkTqknJxTH71k7C+aux59zQ2ixFZPy3Kuow8EqkoDiYUZqIHCbcDNl53h4Iy4g49otDij3/xx27xt/+U+NfTvrtmtsR4qL+GORUi/gs7/3QtQSwcILYxdpLAAAAD9AAAAUEsDBBQACAgIAB0Z51YAAAAAAAAAAAAAAAANAAAAeGwvc3R5bGVzLnhtbLVUwW7cIBD9gv4D4p7Fu4qqJrId5eKol/aQrdQrxrBGAcYCNrX79R2M3d3VRmoUqT7YzJvhvRlmcPkwWkNepQ8aXEW3m4IS6QR02h0q+mPf3HyhJETuOm7AyYpOMtCH+lMZ4mTkcy9lJMjgQkX7GId7xoLopeVhA4N06FHgLY9o+gMLg5e8C2mTNWxXFJ+Z5drRzHA/bm+5uOKxWngIoOJGgGWglBbymumO3TEuViZ7TfNGOpb7l+Nwg7QDj7rVRsdpzorWpQIXAxFwdLGiuwWoy/CbvHKD51TgQbG6FGDAE39oK9o0xfwk2HErc+Cj19wkaM5jAa124BPIMmt+Z66YwlDgAzTzJyCdNuYydwTqEouM0rsGDbKs99OAWg4bm2nmuH9EG33o45Pn09mW+YPKLfgOR2nV3tIVSqGLEwuVxjyn8fmpLkJHRXLM166iOIeJdF1iZcvSHW1jV4MPg5keMSVnZabJUAPZSrrncln8THf3Md1RvTOBuuSrk6SRxWv1PUnNm0PvtXvZQ6PjbOM1jFqk1rYQI1hKfnk+7OU4u1Mto3pXutv/ke6qz5YjPGvkRRv/oifZNMgV/ZbunqGkPWoTtcu+iw4hZzeempO9pz9N/QdQSwcIsjqyvNUBAACuBAAAUEsDBBQACAgIAB0Z51YAAAAAAAAAAAAAAAAPAAAAeGwvd29ya2Jvb2sueG1snZJLbsIwEIZP0DtE3oNjRCuISNhUldhUldoewNgTYuFHZJs03L6TkESibKKu/JxvPtn/bt8anTTgg3I2J2yZkgSscFLZU06+v94WG5KEyK3k2lnIyRUC2RdPux/nz0fnzgnW25CTKsY6ozSICgwPS1eDxZPSecMjLv2JhtoDl6ECiEbTVZq+UMOVJTdC5ucwXFkqAa9OXAzYeIN40DyifahUHUaaaR9wRgnvgivjUjgzkNBAUGgF9EKbOyEj5hgZ7s+XeoHIGi2OSqt47b0mTJOTi7fZwFhMGl1Nhv2zxujxcsvW87wfHnNLt3f2LXv+H4mllLE/qDV/fIv5WlxMJDMPM/3IEJFiituHp8Wu54dh7NIZMZiNCuqogSSWG1x+dmcMs9uNB4nRJonPFE78Qa4JUuiIkVAqC/Id6wLuC65F34aOTYtfUEsHCE3Koq1HAQAAJgMAAFBLAwQUAAgICAAdGedWAAAAAAAAAAAAAAAAGgAAAHhsL19yZWxzL3dvcmtib29rLnhtbC5yZWxzrZJBasMwEEVP0DuI2deyk1JKiZxNKGTbpgcQ0tgysSUhTdr69p024DoQQhdeif/F/P/QaLP9GnrxgSl3wSuoihIEehNs51sF74eX+ycQmbS3ug8eFYyYYVvfbV6x18Qz2XUxCw7xWYEjis9SZuNw0LkIET3fNCENmlimVkZtjrpFuSrLR5nmGVBfZIq9VZD2tgJxGCP+Jzs0TWdwF8xpQE9XKiTxLHKgTi2Sgl95NquCw0BeZ1gtyZBp7PkNJ4izvlW/XrTe6YT2jRIveE4xt2/BPCwJ8xnSMTtE+gOZrB9UPqbFyIsfV38DUEsHCJYZwVPqAAAAuQIAAFBLAwQUAAgICAAdGedWAAAAAAAAAAAAAAAACwAAAF9yZWxzLy5yZWxzjc9BDoIwEAXQE3iHZvZScGGMobAxJmwNHqC2QyFAp2mrwu3tUo0Ll5P5836mrJd5Yg/0YSAroMhyYGgV6cEaAdf2vD0AC1FaLSeyKGDFAHW1KS84yZhuQj+4wBJig4A+RnfkPKgeZxkycmjTpiM/y5hGb7iTapQG+S7P99y/G1B9mKzRAnyjC2Dt6vAfm7puUHgidZ/Rxh8VX4kkS28wClgm/iQ/3ojGLKHAq5J/PFi9AFBLBwikb6EgsgAAACgBAABQSwMEFAAICAgAHRnnVgAAAAAAAAAAAAAAABMAAABbQ29udGVudF9UeXBlc10ueG1stVPLTsMwEPwC/iHyFTVuOSCEmvbA4whIlA9Y7E1j1S953dffs0laJKoggdRevLbHOzPrtafznbPFBhOZ4CsxKceiQK+CNn5ZiY/F8+hOFJTBa7DBYyX2SGI+u5ou9hGp4GRPlWhyjvdSkmrQAZUhomekDslB5mVayghqBUuUN+PxrVTBZ/R5lFsOMZs+Yg1rm4uHfr+lrgTEaI2CzL4kk4niacdgb7Ndyz/kbbw+MTM6GCkT2u4MNSbS9akAo9QqvPLNJKPxXxKhro1CHdTacUpJMSFoahCzs+U2pFU37zXfIOUXcEwqd1Z+gyS7MCkPlZ7fBzWQUL/nxI2mIS8/DpzTh06wZc4hzQNEx8kl6897i8OFd8g5lTN/CxyS6oB+vGirOZYOjP/tzX2GsDrqy+5nz74AUEsHCG2ItFA1AQAAGQQAAFBLAQIUABQACAgIAB0Z51YHYmmDBQEAAAcDAAAYAAAAAAAAAAAAAAAAAAAAAAB4bC9kcmF3aW5ncy9kcmF3aW5nMS54bWxQSwECFAAUAAgICAAdGedWB+rY9bYBAABWBAAAGAAAAAAAAAAAAAAAAABLAQAAeGwvd29ya3NoZWV0cy9zaGVldDEueG1sUEsBAhQAFAAICAgAHRnnVq2o602zAAAAKgEAACMAAAAAAAAAAAAAAAAARwMAAHhsL3dvcmtzaGVldHMvX3JlbHMvc2hlZXQxLnhtbC5yZWxzUEsBAhQAFAAICAgAHRnnVmWjgWEoAwAArQ4AABMAAAAAAAAAAAAAAAAASwQAAHhsL3RoZW1lL3RoZW1lMS54bWxQSwECFAAUAAgICAAdGedWLYxdpLAAAAD9AAAAFAAAAAAAAAAAAAAAAAC0BwAAeGwvc2hhcmVkU3RyaW5ncy54bWxQSwECFAAUAAgICAAdGedWsjqyvNUBAACuBAAADQAAAAAAAAAAAAAAAACmCAAAeGwvc3R5bGVzLnhtbFBLAQIUABQACAgIAB0Z51ZNyqKtRwEAACYDAAAPAAAAAAAAAAAAAAAAALYKAAB4bC93b3JrYm9vay54bWxQSwECFAAUAAgICAAdGedWlhnBU+oAAAC5AgAAGgAAAAAAAAAAAAAAAAA6DAAAeGwvX3JlbHMvd29ya2Jvb2sueG1sLnJlbHNQSwECFAAUAAgICAAdGedWpG+hILIAAAAoAQAACwAAAAAAAAAAAAAAAABsDQAAX3JlbHMvLnJlbHNQSwECFAAUAAgICAAdGedWbYi0UDUBAAAZBAAAEwAAAAAAAAAAAAAAAABXDgAAW0NvbnRlbnRfVHlwZXNdLnhtbFBLBQYAAAAACgAKAJoCAADNDwAAAAA=
Reading from the excel file

Conclusion

OpenPyXL provides many other functionalities to work with Excel files, such as formatting cells, merging cells, adding charts, and more. By using the examples and exploring the OpenPyXL documentation, you can perform various operations on Excel files with ease.

In conclusion, OpenPyXL is a powerful library that simplifies the process of reading from and writing to Excel files in Python. With its intuitive interface and extensive capabilities, you can effortlessly manipulate Excel data and automate various tasks.

Free Resources

Copyright ©2024 Educative, Inc. All rights reserved