Parsing

%87 node_1 Parsing node_2 Transformation node_1->node_2 node_3 Code generation node_2->node_3
Step 1 of 3

Parsing typically gets broken down into two phases: Lexical Analysis and Syntactic Analysis.

  1. Lexical Analysis: takes the raw code and splits it apart into these things called tokens by a thing called a tokenizer (or lexer). Tokens are an array of tiny little objects that describe an isolated piece of the syntax. They could be numbers, labels, punctuation, operators, whatever.

  2. Syntactic Analysis: takes the tokens and re-formats them into a representation that describes each part of the syntax and their relation to one another. This is known as an intermediate representation or Abstract Syntax Tree. An Abstract Syntax Tree, or AST for short, is a deeply nested object that represents code in a way that is both easy to work with and tells us a lot of information.

Parsing

For the following syntax:

(add 2 (subtract 4 2))

Tokens might look something like this:

[
    { type: 'paren',  value: '('        },
    { type: 'name',   value: 'add'      },
    { type: 'number', value: '2'        },
    { type: 'paren',  value: '('        },
    { type: 'name',   value: 'subtract' },
    { type: 'number', value: '4'        },
    { type: 'number', value: '2'        },
    { type: 'paren',  value: ')'        },
    { type: 'paren',  value: ')'        }
]

The tokens array will look something like this:

widget

We will now look at the code of tokenizer function. We will pass a string of code as the input, which will be split down into an array of tokens.

Press + to interact
/* We're just going to take our string of code and break it down into an array
* of tokens.
*
* (add 2 (subtract 4 2)) => [{ type: 'paren', value: '(' }, ...]
*/
// We start by accepting an input string of code, and we're gonna set up two
// things...
function tokenizer(input) {
// A `current` variable for tracking our position in the code like a cursor.
var current = 0;
// And a `tokens` array for pushing our tokens to.
var tokens = [];
// We start by creating a `while` loop where we are setting up our `current`
// variable to be incremented as much as we want `inside` the loop.
//
// We do this because we may want to increment `current` many times within a
// single loop because our tokens can be any length.
while (current < input.length) {
// We're also going to store the `current` character in the `input`.
var char = input[current];
// The first thing we want to check for is an open parenthesis. This will
// later be used for `CallExpressions` but for now we only care about the
// character.
//
// We check to see if we have an open parenthesis:
if (char === '(') {
// If we do, we push a new token with the type `paren` and set the value
// to an open parenthesis.
tokens.push({
type: 'paren',
value: '('
});
// Then we increment `current`
current++;
// And we `continue` onto the next cycle of the loop.
continue;
}
// Next we're going to check for a closing parenthesis. We do the same exact
// thing as before: Check for a closing parenthesis, add a new token,
// increment `current`, and `continue`.
if (char === ')') {
tokens.push({
type: 'paren',
value: ')'
});
current++;
continue;
}
// Moving on, we're now going to check for whitespace. This is interesting
// because we care that whitespace exists to separate characters, but it
// isn't actually important for us to store as a token. We would only throw
// it out later.
//
// So here we're just going to test for existence and if it does exist we're
// going to just `continue` on.
var WHITESPACE = /\s/;
if (WHITESPACE.test(char)) {
current++;
continue;
}
// The next type of token is a number. This is different than what we have
// seen before because a number could be any number of characters and we
// want to capture the entire sequence of characters as one token.
//
// (add 123 456)
// ^^^ ^^^
// Only two separate tokens
//
// So we start this off when we encounter the first number in a sequence.
var NUMBERS = /[0-9]/;
if (NUMBERS.test(char)) {
// We're going to create a `value` string that we are going to push
// characters to.
var value = '';
// Then we're going to loop through each character in the sequence until
// we encounter a character that is not a number, pushing each character
// that is a number to our `value` and incrementing `current` as we go.
while (NUMBERS.test(char)) {
value += char;
char = input[++current];
}
// After that we push our `number` token to the `tokens` array.
tokens.push({
type: 'number',
value: value
});
// And we continue on.
continue;
}
// The last type of token will be a `name` token. This is a sequence of
// letters instead of numbers, that are the names of functions in our lisp
// syntax.
//
// (add 2 4)
// ^^^
// Name token
//
var LETTERS = /[a-z]/i;
if (LETTERS.test(char)) {
var value = '';
// Again we're just going to loop through all the letters pushing them to
// a value.
while (LETTERS.test(char)) {
value += char;
char = input[++current];
}
// And pushing that value as a token with the type `name` and continuing.
tokens.push({
type: 'name',
value: value
});
continue;
}
// Finally if we have not matched a character by now, we're going to throw
// an error and completely exit.
throw new TypeError('I dont know what this character is: ' + char);
}
// Then at the end of our `tokenizer` we simply return the tokens array.
return tokens;
}
//Now we initialize the input to (add 2 (sbutract 4 2))
var input = '(add 2 (subtract 4 2))';
//We will pass this input to the 'tokenizer' function that we created above.
//We will store this data in the 'tokens' array
var tokens = tokenizer(input);
//Let us print our 'tokens' array
console.log(tokens);

And an Abstract Syntax Tree (AST) might look like this:

{
  type: 'Program',
  body: [{
    type: 'CallExpression',
    name: 'add',
    params: [{
      type: 'NumberLiteral',
      value: '2'
    }, {
      type: 'CallExpression',
      name: 'subtract',
      params: [{
        type: 'NumberLiteral',
        value: '4'
      }, {
        type: 'NumberLiteral',
        value: '2'
      }]
    }]
  }]
}

Which can also be represented as:

%1117 node_1 Program node_2 Add node_1->node_2 node_1465299684610 2 node_2->node_1465299684610 node_1465299694368 Subtract node_2->node_1465299694368 node_1465299715515 4 node_1465299694368->node_1465299715515 node_1465299721742 2 node_1465299694368->node_1465299721742

Let us now view the parser function which will take the array of tokens and convert it into an AST.

Press + to interact
/**
* For our parser we're going to take our array of tokens and turn it into an
* AST.
*
* [{ type: 'paren', value: '(' }, ...] => { type: 'Program', body: [...] }
*/
// Okay, so we define a `parser` function that accepts our array of `tokens`.
function parser(tokens) {
// Again we keep a `current` variable that we will use as a cursor.
var current = 0;
// But this time we're going to use recursion instead of a `while` loop. So we
// define a `walk` function.
function walk() {
// Inside the walk function we start by grabbing the `current` token.
var token = tokens[current];
// We're going to split each type of token off into a different code path,
// starting off with `number` tokens.
//
// We test to see if we have a `number` token.
if (token.type === 'number') {
// If we have one, we'll increment `current`.
current++;
// And we'll return a new AST node called `NumberLiteral` and setting its
// value to the value of our token.
return {
type: 'NumberLiteral',
value: token.value
};
}
// Next we're going to look for CallExpressions. We start this off when we
// encounter an open parenthesis.
if (
token.type === 'paren' &&
token.value === '('
) {
// We'll increment `current` to skip the parenthesis since we don't care
// about it in our AST.
token = tokens[++current];
// We create a base node with the type `CallExpression`, and we're going
// to set the name as the current token's value since the next token after
// the open parenthesis is the name of the function.
var node = {
type: 'CallExpression',
name: token.value,
params: []
};
// We increment `current` *again* to skip the name token.
token = tokens[++current];
// And now we want to loop through each token that will be the `params` of
// our `CallExpression` until we encounter a closing parenthesis.
//
// Now this is where recursion comes in. Instead of trying to parse a
// potentially infinitely nested set of nodes we're going to rely on
// recursion to resolve things.
//
// To explain this, let's take our Lisp code. You can see that the
// parameters of the `add` are a number and a nested `CallExpression` that
// includes its own numbers.
//
// (add 2 (subtract 4 2))
//
// You'll also notice that in our tokens array we have multiple closing
// parenthesis.
//
// [
// { type: 'paren', value: '(' },
// { type: 'name', value: 'add' },
// { type: 'number', value: '2' },
// { type: 'paren', value: '(' },
// { type: 'name', value: 'subtract' },
// { type: 'number', value: '4' },
// { type: 'number', value: '2' },
// { type: 'paren', value: ')' }, <<< Closing parenthesis
// { type: 'paren', value: ')' } <<< Closing parenthesis
// ]
//
// We're going to rely on the nested `walk` function to increment our
// `current` variable past any nested `CallExpressions`.
// So we create a `while` loop that will continue until it encounters a
// token with a `type` of `'paren'` and a `value` of a closing
// parenthesis.
while (
(token.type !== 'paren') ||
(token.type === 'paren' && token.value !== ')')
) {
// we'll call the `walk` function which will return a `node` and we'll
// push it into our `node.params`.
node.params.push(walk());
token = tokens[current];
}
// Finally we will increment `current` one last time to skip the closing
// parenthesis.
current++;
// And return the node.
return node;
}
// Again, if we haven't recognized the token type by now we're going to
// throw an error.
throw new TypeError(token.type);
}
// Now, we're going to create our AST which will have a root which is a
// `Program` node.
var ast = {
type: 'Program',
body: []
};
// And we're going to kickstart our `walk` function, pushing nodes to our
// `ast.body` array.
//
// The reason we are doing this inside a loop is because our program can have
// `CallExpressions` after one another instead of being nested.
//
// (add 2 2)
// (subtract 4 2)
//
while (current < tokens.length) {
ast.body.push(walk());
}
// At the end of our parser we'll return the AST.
return ast;
}
function printAST(ast) {
function traverseArray(array, parent, depth) {
array.forEach(function(child) {
traverseNode(child, parent,depth);
});
}
function traverseNode(node, parent, depth) {
let spaces = "";
for(let i=0; i < depth; i ++) {
spaces = spaces + "\t";
}
// Next we are going to split things up by the current node type.
switch (node.type) {
case 'Program':
console.log(spaces, node.type);
traverseArray(node.body, node, depth+1);
break;
case 'CallExpression':
console.log(spaces, node.type, ' - ', node.name);
traverseArray(node.params, node, depth+1);
break;
case 'NumberLiteral':
console.log(spaces, node.type,' - ', node.value);
break;
default:
throw new TypeError(node.type);
}
}
traverseNode(ast, null, 0);
}
var tokens = [
{ type: 'paren', value: '(' },
{ type: 'name', value: 'add' },
{ type: 'number', value: '2' },
{ type: 'paren', value: '(' },
{ type: 'name', value: 'subtract' },
{ type: 'number', value: '4' },
{ type: 'number', value: '2' },
{ type: 'paren', value: ')' },
{ type: 'paren', value: ')' }
]
var ast = parser(tokens);
printAST(ast);