...
/Classification using SVM, KNN, RandomForestClassifier, and PCA
Classification using SVM, KNN, RandomForestClassifier, and PCA
Learn how to classify multiple datasets using Sklearn classification models.
We'll cover the following...
We'll cover the following...
Helper functions
Let’s create some helper functions to load the datasets and models.
Function to get the dataset
Let’s create a function named return_data() that helps us to load the datasets.
def return_data(dataset):
if dataset == 'Wine':
data = load_wine()
elif dataset == 'Iris':
data = load_iris()
else:
data = load_breast_cancer()
df = pd.DataFrame(data.data, columns=data.feature_names , index=None)
df['Type'] = data.target
X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, random_state=1, test_size=0.2)
return X_train, X_test, y_train, y_test,df,data.target_names
- The function
return_data(dataset)takes a string that contains the name of thedatasetthe user selects. - It loads the relevant dataset.
- We create a DataFrame
dfthat we can show in our UI. - We use sklearn’s
train_test_split()