Visualize the Windowing
Learn to visualize the image before and after transformation.
We'll cover the following...
An image before and after windowed()
Let’s visualize the image before and after applying the windowed()
function. In the code below, we can see the difference between the original image and the image after applying windowed()
.
Press + to interact
from matplotlib import pyplot as pltimport nibabelimport numpy as npfilepath = 'volume_pt5/volume-44.nii'imagedata = nibabel.load(filepath)array = imagedata.get_fdata()array = np.rot90(np.array(array))def windowed(px, w, l):px_min = l - w//2px_max = l + w//2px[px<px_min] = px_minpx[px>px_max] = px_maxreturn (px-px_min) / (px_max-px_min)f = plt.figure(figsize=(12,12))ax = f.add_subplot(121)ax2 = f.add_subplot(122)ax.imshow(array[...,50].astype(np.float32),cmap=plt.cm.bone)ax.title.set_text('Original image')ax2.imshow(windowed(array[...,50].astype(np.float32), 150,30), cmap=plt.cm.bone)ax2.title.set_text('Windowing image')
Let’s take a closer look at the code above.
- In line 7