Specify values in DataFrame columns#
Specify how you want to organize your DataFrame by columns.
df = pd.DataFrame(
[[1, 2, 3],
[4, 6, 8],
[10, 11, 12]],
index=[1, 2, 3],
columns=['a', 'b', 'c'])
Read and Write to CSV file#
Open the CSV file, copy the data, paste it in our Notepad, and save it in the same directory that houses your Python scripts. Use read_csv
function build into Pandas and index it the way we want.
import pandas as pd
data = pd.read_csv('file.csv')
data = pd.read_csv("data.csv", index_col=0)
Read and write to Excel file#
Call the read_excel
function to access an Excel file. Pass the name of the Excel file as an argument.
pd.read_excel('file.xlsx')
df.to_excel('dir/myDataFrame.xlsx', sheet_name='Sheet2')
Read and write to SQL Query#
from sqlalchemy import create_engine
engine = create_engine('sqlite:///:memory:')
pd.read_sql("SELECT * FROM my_table;", engine)
pd.read_sql_table('my_table', engine)
pd.read_sql_query("SELECT * FROM my_table;", engine)
(read_sql()
is a convenience wrapper around read_sql_table()
and read_sql_query())
df.to_sql('myDf', engine)
Get the first element of a Series#
Since Pandas indexes at 0, call the first element with ser[0]
.
import pandas as pd
df = pd.read_csv
df['Name'].head(10)
# get the first element
ser[0]
Get the first 5 elements of a Series#
Use ser[:n]
to get the first n elements of a Series.
import pandas as pd
df = pd.read_csv
df['Name'].head(10)
ser[:5]
Get the last 5 elements in a Series#
Use ser[-n:]
to get the last n elements of a Series.
import pandas as pd
df = pd.read_csv
df['Name'].head(10)
ser[-5:]
Select a single value position#
df.iloc[[0],[0]] 'Name'
df.iat([0],[0]) 'Name'
Select a single value by label#
df.loc[[0], ['Label']] 'Name'
df.at([0], ['Label']) 'Name'