Big O and Big Omega Notations
Discusses the Big O notation with examples
We'll cover the following
In the previous section, we defined Θ notation. In this section, we'll discuss big O and big Ω notations. The reader would notice the use of the adjective "big" with these notations and rightly suspect that there exist complementary small o and small ω notations, which we'll discuss in the next lesson.
Big O
Big O is expressed as O(g(n)) and is pronounced as "big oh of g of n". We observed that Θ provides both an asymptotically upper and lower tight bound. Big O only provides an asymptotic upper bound which may not necessarily be a tight bound.
Big O is the most commonly talked-about notation when discussing algorithms in industry settings or in interviews. You won't see Θ or other notations being discussed, and for good reason too. Generally, if we are guaranteed that an algorithm will perform no worse than a certain threshold, and that threshold is acceptable for the problem at hand, then knowing its best-case performance or finding a very tight upper bound may not be productive.
Formal Definition
Similar to Θ we define O(g(n)) as a set of functions and a function f(n) can be a member of this set if it satisfies the following conditions:
where c is a positive constant and the inequality holds after n crosses a positive threshold n0
Explanation
if f(n) = Θ (g(n)) then it also implies that f(n) = O (g(n))
The notation means that the function f(n) is bounded by above to within a constant factor of g(n).
Note that the inequality requires f(n) to be greater than 0 after n crosses n0.
The set O(g(n)) may also contain other functions also that satisfy the inequality. There could be several values of c that can be used to satisfy the inequality.
Insertion Sort
Previously, we came up with the following f(n) for the insertion sort algorithm
Now we can attempt to find the O(g(n)) for this expression. As a general rule of thumb, when working with big O we can drop the lower order terms and concentrate only on the higher order terms. The term n(n-1)⁄2 is the highest order term, since it involves a square of n. The above expression is thus quadratic, and we can ignore all the constants and linear terms. Thus a tight bound on the expression would be O(n2). We can prove it below:
You can always pick a different set of constants as long as it satisfies the inequality for all n > n0.
As a general rule of thumb, for an expression consisting of polynomials the expression/function is O(the highest polynomial degree in the expression).
Level up your interview prep. Join Educative to access 80+ hands-on prep courses.