Assignment Solution
In this lesson, we will discuss the solutions for the assignments in this chapter.
We'll cover the following...
Problem one
Build a model with K = 6
, K = 8
and K = 10
and check the text generated.
We will use the same code and functions that we created in our previous lessons.
Press + to interact
import numpy as np# Generate the Lookup Tabledef generateTable(data,k):T = {}for i in range(len(data)-k):X = data[i:i+k]Y = data[i+k]if T.get(X) is None:T[X] = {}T[X][Y] = 1else:if T[X].get(Y) is None:T[X][Y] = 1else:T[X][Y] += 1return T# Convert the Frequencies into Probabilitydef convertFreqIntoProb(T):for kx in T.keys():s = float(sum(T[kx].values()))for k in T[kx].keys():T[kx][k] = T[kx][k]/sreturn T# Load the training datadef load_text(filename):with open(filename,encoding='utf8') as f:return f.read().lower()# Create the Markov Chainsdef MarkovChain(text,k):T = generateTable(text,k)T = convertFreqIntoProb(T)return T# Perform Samplingdef sample_next(ctx,model,k):ctx = ctx[-k:]if model.get(ctx) is None:return " "possible_Chars = list(model[ctx].keys())possible_values = list(model[ctx].values())return np.random.choice(possible_Chars,p=possible_values)# Generate the Textdef generateText(starting_sent,k ,maxLen):model = MarkovChain(text, k)sentence = starting_sentctx = starting_sent[-k:]for ix in range(maxLen):next_prediction = sample_next(ctx,model,k)sentence += next_predictionctx = sentence[-k:]return sentencetext = load_text("train_corpus.txt")generated_text = generateText("dear my countrymen",k=8,maxLen=2000)print(generated_text)
Explanation: ...