Solution: Find the Best Combination of Parameters
View the solution to the “Find the Best Combination of Parameters” exercise.
We'll cover the following...
Task
The task here is to find the best combination of parameters for the logistic regression model using grid search.
Solution
The provided workspace contains the code solution for the task mentioned above.
Press + to interact
X=df.drop(columns="target") # featuresy=df["target"] # target# features scalingscaler=StandardScaler() # scaler instanceX=scaler.fit_transform(X) # scaling features# train-test data setsX_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 7135, stratify = y)logR=LogisticRegression() # model instance with default parameterslogR.fit(X_train, y_train) # training or fittingprint("mean cross-validation score with default parameters:",cross_val_score(logR,X_train,y_train,cv=5).mean())print("\n <<< Grid Search >>> \n")grid_values = {'penalty': ['l1', 'l2'],'C':[1, 0.1, 10, 100, 1000]}logR=LogisticRegression() # model instancegrid = GridSearchCV(logR, grid_values, cv=5, scoring='accuracy')grid.fit(X_train, y_train)print("best parameters:", grid.best_params_)print("\nmean cross-validation score with optimal parameters:",cross_val_score(grid,X_train,y_train,cv=5).mean())
...