Working Principle of K-Nearest Neighbors
Learn about the working principle behind k-nearest neighbors.
We have explored the evaluation methods for linear regression (continuous target) and logistic regression (class prediction). In a classification problem, we're generally concerned about identifying anything incorrectly. We want our algorithm to predict correctly as much as possible on the test dataset for generalization. KNN is another straightforward and widely used algorithm, typically for classification. However, it can be used for regression tasks as well.
KNN review and distance functions
As discussed in the previous lesson, KNN considers how many observations belong to a particular class within the selected
Distance functions for KNN
Typically, the KNN algorithm uses Euclidean or Manhattan distance functions. Other distance metrics are rarely used for computing the distances. We can also create our distance function in the algorithm (depending on our customers’ needs). A few standard distance functions for KNN are as follows:
Euclidean distance
Euclidean is a straight line distance between two points. This is the most common choice and can be calculated using the Pythagorean theorem from the cartesian coordinates between two points. Sometimes, the Euclidean distance is also called the Pythagorean distance.
Get hands-on with 1300+ tech skills courses.