...

/

Solution 2: Pandas Essentials

Solution 2: Pandas Essentials

Let’s look at the solution related to NumPy essentials.

Task 1: Count of NaN in the DataFrame

Calculate how many NaN we have in our dataset.

Hint: use isnull().

Solution

Press + to interact
def number_of_nulls_in_each_column():
# Your Code Here
list = pay.isnull().sum()
print("Nans in each column")
print(list)
nans = []
for nan in list:
nans.append(nan)
return sum(nans)
print("Total Number of Nans in our DataFrame : ", number_of_nulls_in_each_column())

Explanation

We use the ...