...

/

Analyzing Textual Comparisons with Document-Term Matrices

Analyzing Textual Comparisons with Document-Term Matrices

Learn the significance of document-term matrices in text mining.

Why use document-term matrices?

The following code lists the tokens and their frequencies:

Press + to interact
# This displays leading n-grams ------------------------
shelleyText |>
removePunctuation() |>
removeWords(stopwords('english')) |>
removeWords(c("I")) |>
removeNumbers() |>
stripWhitespace() |>
Boost_tokenizer() |>
vapply(paste, "", collapse=" ") |>
table() |>
sort(decreasing = TRUE) |>
head(n = 10)
  • Line 3: We use the pipe (|>) operator to pass the shelleyText data through a series of text processing functions.

  • Line 9: This step involves tokenization, breaking the text into individual words or tokens.

  • Line 10: Here, the ...

Access this course and 1400+ top-rated courses and projects.