Building the Model
Explore the process of creating a regression model with PyCaret by training a Gradient Boosting Regressor, tuning hyperparameters, evaluating using k-fold cross-validation, and visualizing model performance. Understand how to finalize and save models for deployment.
Creating the model
We can now train the Gradient Boosting Regressor using the create_model() function, which uses -fold cross-validation to evaluate model accuracy.
Create model
MAE | MSE | RMSE | R2 | RMSLE | MAPE | |
0 | 2324.8131 | 24607040.5795 | 4960.5484 | 0.8393 | 0.3810 | 0.1751 |
1 | 2571.2202 | 29114809.8137 | 5395.8141 | 0.7413 | 0.4376 | 0.2551 |
2 | 2483.0865 | 21498482.3051 | 4636.6456 | 0.8585 | 0.4261 | 0.2000 |
3 | 2545.2911 | 25489822.2086 | 5048.7446 | 0.8158 | 0.3937 | 0.1765 |
4 | 2218.7259 | 19926308.9440 | 4463.8894 | 0.8240 | 0.4237 | 0.2161 |
5 | 1991.9530 | 17546103.1066 | 4188.8069 | 0.9050 | 0.2883 | 0.1446 |
6 | 2557.6356 | 30138770.5115 | 5489.8789 | 0.8316 | 0.4120 | 0.1911 |
7 | 1904.3245 | 16102540.3261 | 4012.7971 | 0.8950 | 0.3101 | 0.1860 |
8 | 1789.5416 | 17459155.1593 | 4178.4154 | 0.8269 | 0.3299 | 0.1574 |
9 | 2368.0500 | 26271250.1647 | 5125.5488 | 0.8125 | 0.4560 | 0.1721 |
Mean | 2275.4641 | 22815428.3119 | 4750.1089 | 0.8350 | 0.3858 | 0.1874 |
SD | 274.1307 | 4766740.8468 | 501.8900 | 0.0435 | 0.0546 | 0.0297 |
The dataset is partitioned into subsamples, with one of them being retained for validation, while the rest are used to train the model. This process is repeated ...