Building the Model
In classification tasks, learn to create, tune, plot, save and make predictions from the machine learning model.
Creating the model
We’ll use the create_model()
function to train the Linear Discriminant Analysis model because it performed best in the model comparison.
# Creating the modelmodel = create_model('lda')
Model
Accuracy | AUC | Recall | Prec. | F1 | Kappa | MCC | |
0 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
2 | 0.9167 | 1.0000 | 0.9167 | 0.9333 | 0.9153 | 0.8750 | 0.8843 |
3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
4 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
5 | 0.9167 | 1.0000 | 0.9167 | 0.9333 | 0.9153 | 0.8750 | 0.8843 |
6 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
7 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
8 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
9 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Mean | 0.9833 | 1.0000 | 0.9833 | 0.9867 | 0.9831 | 0.9750 | 0.9769 |
SD | 0.0333 | 0.0000 | 0.0333 | 0.0267 | 0.0339 | 0.0500 | 0.0463 |
This function uses stratified -fold cross-validation to evaluate model accuracy, a variation of the standard -fold technique used in the Regression chapter. The dataset is consecutively partitioned into ...