Solution Explanations: Indexing
Review solution explanations for the code challenges on indexing.
We'll cover the following...
Solution 1: Term-based indexing
Here’s the solution:
Press + to interact
main.py
feedback.csv
import pandas as pdimport nltkfrom nltk.tokenize import word_tokenizefrom nltk.corpus import stopwordsfrom collections import defaultdictfeedback_df = pd.read_csv("feedback.csv")feedback_df['tokens'] = feedback_df['feedback'].apply(lambda text: word_tokenize(text.lower()))stop_words = set(stopwords.words('english'))feedback_df['tokens'] = feedback_df['tokens'].apply(lambda tokens: [token for token in tokens if token not in stop_words])index = defaultdict(list)for idx, tokens in feedback_df[['feedback_id', 'tokens']].itertuples(index=False):for term in tokens:index[term].append(idx)for term in index.items():print(f"Term: {term}")
Let’s go through the solution explanation:
Line 8: We apply a lambda function to tokenize each
feedback
text and then convert it to lowercase usingword_tokenize
.Lines 9–10: We ...
Access this course and 1400+ top-rated courses and projects.