Image Processing
Learn about the project structure and model of image classification that works in ML.NET.
We'll cover the following...
In this lesson, we'll have a more detailed look at how to use ML.NET deep learning APIs for image classification. We'll do so with the aid of the following playground:
/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAoHCBYWFRYVFRYYGRgZHBofGRkZGBoYGhodHRweHBwfHhgcIS4lHB8rIBoZJjomKy8xNTU1HCQ7QD80Py40NzUBDAwMEA8QHxISHzYrJSs1ND02NDQ6NDQ0NTQ9NDQ0NDQ0NDQ0NDQ0NDQ0NDQ9NDQ0NDY0NDQ0NDQ0NDQ0PTY0NP/AABEIAOEA4QMBIgACEQEDEQH/xAAbAAEAAgMBAQAAAAAAAAAAAAAABAUBAwYHAv/EADMQAAICAQMDAgQEBgMBAQAAAAECABEhAxIxBCJBBVETMmFxBoGRwUJSobHh8CNi0RSC/8QAGgEBAAMBAQEAAAAAAAAAAAAAAAECAwQFBv/EACMRAQEAAgICAgMBAQEAAAAAAAABAhEDIRIxBEETUWFxkSL/2gAMAwEAAhEDEQA/APZoiICIiAiIgIiICIiAiIgIiYgZiYuIGYiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiBiJH6rqQgs/kByTx+4nOdb68xKqvaT822rWxYvdVGvFHm5XLKY+1Ms5j7dXIut1+mvzOozXNm/ahOE6r1TVLve4bQBm3NkG+wGwBnHPGPMrT1FoG30rkGzuAL8Wd57bKnArk8AXKXl/TO836judb19TjTB3f9lNcnGDkkKxx7Tml9e1NXZbFg7uCoG3bt/mH8K7SDk8gY96tPUg7q7abBVDhXY4yoBZVuyCu6j/ANjV3Gi+1ETfaBDuCKcsX3k7tpUcV968WJnlnayyzyvurDTbqA5ZnICkg+HZSKADMbwTz5ojkGRR6lrgBxqFT2iyHGoxtgFK0A2KOcZHFgzQ3UhkI3KF3C1FuFXzkUEAAAog1QObsV2n1aAs+bNneX21YDAhCKbGoDgYJB5uV2rt1fQ/ip9Jduo6vW4jndQrBYHxY5HnnE6f0X1pNcVRVwMqfb3B8j+onm/WbCoLVt22Cw3M38ZJL/MM8lciaNPVKFGQjcGNMvYBYJvAJHbuGfIxQl8c7F8eXKe3s0TiPSvxnYCuhagQzg2dy+GBAAPHnzcu+n/E2g5C7ipJAUMpF3wa5A+9cTaZSuiZ41exMAzMsuREQEREBERAREQEREBERARExATR1WuEUsfHA4snAH6zdcovXdc0VG3i1FgEt/DzyLrgeKlbdTauWWor+t6lmtt1k8KK7RZBycAjJ/IipSdSjVYQMVRVUFdxLi8MMhRuFknyh4HO7WIcvpoR/wAZUs2QSDtYNfB7t4pjQCk0aqQmfa42qSdi7n+IgRA4IpNxLHcSc82BkA1Oa7rjy7auv1ELOzE7dMgnubZubcwQJYBajRujTL9hB1Nbcw7Raqm3eqgISfkwRbYA3DaPatwvR1PUFPgJsdiWD0HwAxpj35OHZbagb9syPqdWQW0UDvqtqOdquXPgMWVDgGmAXmqPLWqRWRu1FZg29yllm3glbKqK7RtvszuJIqxkAAaOp0WY79FQaLbNwKhwcMWvkdr+33N5k9ClG3JfcWFbAiCtzkF2PeFASzZXt22QdwgLr0duxVatzjcQQBkAgiw1E2AazXdxJ0s1t6pnZW1ydoCqD4U52iglbvegASMAyevXhSVXcMrTdzugrFKR2bhYs59wRKx+qvvdyHAbaAu1meyF8Hso8GsgVUmdN0mu4TU1nVQwJ2Mha1VQfmBuyAprHg2Cbip8eth64u7EP8rCwrErbHs3OTQOCB9WGeJFbqGVPhaSurO+1LYmiSHOQxJF7TecWc5l11HpekXZzvbdvRwQHW+QxYm6U4v6DbWJ863SIl7HN7Ao3G6KkhGKqvI+ngx0dMHr12qKXIKbjgblcEneM3gtVePpNWr1KN2BmQUSMYegDuDCw2DWbv2m3Xc4KAsMgVZxSr3Kw3ZG7gX2jJ4ELp9fem9H2DCVfBHKm6s9wulA8Xkys69o19r70v8AE/UaAUC9RSoFNZAOK2+3kUCBkX9PRfRvVtPqE3ocigw8qSLr7ZwZ40OpNkMNxRsZK7iVIXYK9mYUTXjwJdeg+sN0+qSrAhjTIwOQNpY9v8VlqP1HM2xy101wzs6r16Jr03BAINggEH3B4mybOkiIgIiICIiAiIgIiYgatfXVFLNwJQavrBckCwvcLFcqayxPBNjxwfvI/q/WAudrG2oLi8UflDdv8xJINgHirlNoktRAokabEHO1Eo0xXlgGP/6Cc1MMuTvUc2fJbdT0l9T1buDtG8XtYOz7DXcfkB57OT5ZZ9anVbhu37ihsKBtO3eQAxLbSGIQAngc+SKj1HrACmmt2Pn2lQUQfPZBAQkFLIz4HiQvTUB+KhfamorJp7F3fI5YEMzlSTvbJGAtHOBnbu7Z7WGv1ITftCIN9O4K4OUVHZe4m0UUB2qLN+aX1DXan2HducqE00PxLI3bN/CGipN2QNw/hx99f1hIO8dpYbQQGG9tpUE3tACqCSTdvZq7lZq7W+Ez7giNtcNuI3hi5ZUNZZrQAj5WJP8ACQRp8sqI6ptXeAykabFirfDYM1sbIZNnewBwwAuzPn0rqhvZgFQAgJp7FSmJZaZRbGlYkmweKo1NdJsR2LAq72tlVDvtss6kMRuVlxd7QABedep0zbrZmYs6E1poCB2qpBYsql7OTQwLEbgkdYSy721U71QU5BpdSy1su4KCCBj8uMVPUOKLvt2UaRf43OMUQdpFm8/JnkX962q7kJpC9RmLqFCseCSdxGCFDE0aAPipv0/TF0VCH4Z1SKJZ02o7OEUDdywDn3Wxf8Ni06i0n2tvQPSSoGq6gOwu2APw1+YE7xTOSoWhwHP0EsNTrUZi++lypJCpttA5ptoYtQQ7uACO3GXUtsXZRcoiKi2CN9OhcqoOxa23Z48ms1+s7qXcp3MQK5D0FOWoF17gStDC48SkRbupK9QVDByFc2Cdykhr3WdzNu2sQoFjGeakfW6pmIoAkdptgGNBd+4MM42WKAsnmrkbSLkhS+07nNIhRXCrtBJIUvtJT2wtSHrda5UgMVB2nduJJNWADxZO6gKBzftLCx0OucNeGX+bgXQ5KisqVNEeeeIYBySBsYFW31fDlDmjRxzRNbb+lf0urvIKoqkBhdgHT7sbgCBxdUMcfeRoajAqSGsDc7HbRNA3vRjQ+mflOMGB8619qsGCj4YAerBV6ui1ECzZGP0xJ0H7+O04WuDtalpjwCC3nwwHGc9Rs1FUPyD5G0092lgiiTXkf1nz0vp7ozUVNJSjdQBIsLXgFiub+uMSJdJ3HqX4Y9XQ6OnpM43qNoBobgKC1WCaIH3BnRzxjuXUULa7E3Ip2HeUYqoOL5+vFke89N/DXrI6nSDHDrhx7GyL+xozoxy303wz31V3ERLtSIiAiIgIiIGJD6/qAorycDxX1JHAEmTmPxXq4ZNxUlDRANi74IU+B9+KlM8vGbUzuopPUNQoSUdNqLqHaSdxJG47n3DFsrEj5VJNqJGbS1Ah+I6gnDONxATbtwp7V2M4Hsc8UAdeh3n4oNgMh0l3OnytVsqnKqpKiuTzkgHR6n11god20l0Gx7cnaSi78bSdhJW+GybquXe3JpqAKIytqaYtnDEBlZiX7+wkszgFaJX+O/oaTqHfTclAvYX2FdhWmG8h9hLrbbRk8eRm5+rrEaZfUTZg0m7+YFbsMN5ba9kEimByRRpfU+uCEqg7gEsnPdas9bz8xYO24c7jx4mdmvo6r1VFIdXNOAVA279NwQCzLWTtVeaBAFYlV1PqZ3OdPAYnNdxskjIybHkj3mjW0WZwzfxkmwNuCaoe4s8e1Tbq9CVrwazbbQL9q5U1ZrP0l/GRfUnbrPhptUqysHt95XDUEbczINx2hnVfY++ZQ9frruJotZYsmwrgkqoNnuF5OckZzNa+vFV+Gzu4BU3a0KUowVms5Q7bon3lh+Hut0OoYjWStRaKqMI6r9PdfK8eQOQM7MpLlfSJjfab0nQKjo7ggujMWUWUG4Nucmwi/DGwGqJevcyMVLsdTTQpqG1KtvTaxIZ1u1ybL7/AQgjIl36kgCjeTbAKNTaSfn3KQFFAIoYgfTcB4lA2oAhYlLLfOVG5zbKysSSaA3UTzf1WVuWp0rN1YdS2oNNSumGLAfEDHTGmRRNbBWTgnOQh4Nyp1mddVKO1z8R95CKaYbRgIcYqyuKxVAi76nQHwwBSOyKKNBSXDKQLOQFRj9SU+k51dRtNxtK1tFoDakAAKLqmGc/Y+Ku2O4tO0rpeiXbQCMVOoSNR3O/O0qQygXuKuFHIN+ZXvpLaBTsVjXcRYIBbAAvYPF+35y86L/kTdh2GWYKTkAbgcUKFC8cfrG6z01227VJoXuXFezbSaY17kEXUz/JfLWS8QD1BVGtgxOWIOFul3AX3cscX/aSek0sN4LElvHOCQRwKU8Xmpn/5GCjeAGBO1TlivsDeAfvyfEaekVUXuVVuie4nDAFTncAbA4HAoTTHKZTpF6V+tqXqbPnNHJXO5lC1dduQRzVtzizcp1ROM0QaVls3fgAGj5FNxwK4ombKmwD3H4gBKEb7GCM7bvF/nJ3Tuxx2KF2t22q7ttndkbAdxz5zNL2rYtx8/wAYneoUqRRbbfy7aF2wO6vrm7BPf/gB0C6iKCKCkLtNAWT81V/EMX/Yzzrp7RC1YZkGmGQGiKG6vBoYOPFfNm36D13V0bbTYqDZogFPbIAqwFAs34qxVsL45Jwy8a9hiUX4Y9cXqdJSSPiAdwAI4YrefqMjx+kvZ0S7dUss3GYiJKSIiAiIgYnI+ua3xHKDcTTqEA7sC920kbgcAeO761OunN/iX09mrWTJQG1zmg1UBzls2QMDiplzS3HpnyS3FzHVow0kADBdqne7dwCqhtifnewTuIxsAVM3KpFrUZg1imVFLsbpmvuJG2jotgDggYEsUJXdoavacBNyhrLkqO49uAqhbxWeRKbq9dtpogKjMNQ2o7S+ALoqO5gSCMljxQHHvblUxDJv+LqlS5AeiN7naBhQSqhWLWTk0PbEDpNLTLajWxKqAqMFDAnlgAM1QyBgG8cy16tEZ3YIzDcbyArjaStUckst+Dj6Td6N0jOjugZAtqDg4puSM8kWOZpcp4px257qtA7GQkUwDDJavIBJAyP2lZsbYUN9jAjOKOKr8p1vXemv85Jb6kAHn2WUqpteiv0z5Ht/n6ycOSWdXbWXpUbff9Oa+3tJHpmuQ+nwpVwVcDIPsR5Un+5nQ+t+iqVXV0h2OLX6Hyjf9h/mc3oIQ4HkEf3m3lMotLK9LJDqCL24I+gOf0okeDRlR6ouxFCgdo3DAA3DztGB/mS/R9Xv+G2Dtqj9DWP6TZ670xrjxPOmVmevpl4xUp6q+rsQpbDaF28gkhdxvkmx9MDjzJ0PTX362m6UuwU2e68D/qV7SSCDRkr8I+lj4iO4urr7+87LW6NSqsObr8j/AKJHLzePUTpQeidGqJqpXzghqJF2Js1GXSXaqgsOB4JPk/74ltpoEBv6k/t+0p/X3CIDtAdzSpeSf74GaH+ZTVzuk1T9f1Gqx3uykXQRVWgPpi93HmV3UaYUoLArAz3HJbbk1Xjb4AWa9T1EabMgRSxYWVY2O2vl48k+eCftg9KHA3NlsB75PCkWR9Dg+/0nVhhcIpUDW6ZmAZ+AT2kgqVVb2huQSDwBknxVzf0QKEhgSQa5+e8CjZ2fOFzgAnmrm3ZsZSxG0GxuO0jy1E1tFjiyTmq5EvS00XLeLVckA2l2qN5xzgDdU1lpb0+Ou2qBpH5lG+yKArO7FhSKY1VdwwZH0GO1VQiu5ASTz8pxZrLbsYxXFWGqXbcebK5F7TdIGF45JA+h+gnx0FMjCgCzeNyqOHINklflOR7HMvPRHY/hD1L4WuSFB39rjeKXc+DfAobb8Znq08a9I07fSBHzOtEjly53BiCByRgUMYvBnss147024b1WYiJo2IiICIiBiRPUOn36bL5rFGs+M+JLiRZLNVFm5p5V6r0zOxDfMpAZdw3M5IHJOflPtxOa9Y65kvvX/kAY8EtwQavuPaB+oxPV/wAQ+hq6tqaa0+L2rZbP6eSCfb2oEea+rejMpBZCGZU5TkVVtu7SxvmuQRjkcn4vHL+ObLG43tUn8QbthdCyrds5IGc7VA5zzdzsPwb6jp6zOiq9m2umZdoq147a/Q+85X038NP1Gt8FVAbJJbtpVoGlJsKCw4+nNmvY/wAM+hjpNH4QbcSdxIFCyACB5IsefeWnBMovjhL25/qfSV2HbwePpOW6j0hCxWqJuvexPVOs6AMDWCefqff7zkfVOgYNuA7l5+s4OXiy4LueqZY+KgPR/A0+9SyuCHUEWDyji+SuRWMEzket6Ebwy5B/3I8TufUdDcocXVUR7fWU69L3Uw/OOHn61VdrP0/0ddUJqEkHF0aP3k/rvTAaUOx+rUf7VM9LaoAMSy6XTv8A38olm7JExD6PpPhoPBA/q1SQh4A8SX1OnmpHGnRJF/79Jz5ay5P5DSL1mumn3ObJPapPJ/8ABPNvUNd26j/6H+YGwbwFsqAuflGePPPJnp2l6EvWaWqWNZ2ocY2g33EGrJGQLE4H1H0ltHWKtbbe0Xak7e2xx2jbPQmFwxn6LLEPU0UY7mD5q13AKx5HgtjM36Q+IFQLZDjZzS8gCx95deh+iB2BcY8Dx+kuOi9POja7e4m/uT5v9OOMeZlnybmsUacp6d0rgag1GVQtXZv3rAPAr+grmQeodTmy3hWIP50Tf38f0nobfhnU1zbGx5s4/wAyo/FfoZ6ddNQV7rIbGCPoR9vyv2luP8lm7Ov+Fx+9OK1+new23N/ICOAvzbqsGwSePrWJYaXTuRtA+U5JF+DebuyxK49hxYnyOlY+SG3ZPNG9tgHgGiSPP2zLLo9FsEUN2wC/m2qFF35rBAJ8t7Z3uWorpc/g/QJ6nRPwwSq9wJAKDJ3H+Y3tIyxzPVJx34S9HJY9TqqN+VSxTiiQxYcXYr7CdiJ0cUvjvL26OOajMRE1XIiICIiAiIgJq1NNWBDAMDyCAR+hm2IGjQ6ZEACqAAKHvX35m+IgYkLr+jDj6jg/tJsSueEymqizbier6cqTj7iU/UdLRxx4nb+rdNeQOZzmtocip8/zcd4uSxjljpB0HJoToOiSquVGlp0R9/8Af3lqNWiKlsc/HuoiRr7L5z+kidTQRiCLCmvvWJ9dWVcXe1vfkfocSGnRqtkkMT4ApR9frNJnjvckWVHo34tbp9NtD4O5gx2Nupc/zCrx9OfpI6A6znW12LMePYDwAPAHtNZ6Tuusk/vLXpun4uRy/JysmO0W29CIceB7Dk/SdJ6X6OTT635J7ff/AMm70f0sLTsO48D+X/Mu52/F+PZPPP3fpfHH9vlVAwMSv9X9J0+oTa94uiMFbFGWcxO+yWaq9m3EH8D0y7XXbeSVpqocfmD58D3xd+lfhzS0TuPe2MsBQPNgeDcvIlJxYy70iYyEzETRYiIgIiICIiAiIgIiICIiAiIgaOpUFTco+p0fpn7V/edCReJV9dpLZJzQwJw/Mwnj5K5RR64C1g/eZd/7D+0dRkij+XiaiK/Kx/WeFct269MmrUa5v0hg/YyGxO76fb95YFqUULJ4EvxTXZEAdJZEuvSOgBYGsLk/U+JGVXwCBfsATj7zoPTFISyKs/08Tv8Ai8Eyz8qvjN1NmYiey0IiICIiAiIgIiICIiAiIgIiICIiAiIgIiIGJWeqLkH6SzkP1Edo+85vlY+XFYjL0odTSz/WQ9YG+aly64uVvU6c+ezw8fTFE+HnmSVNH7Y/387nxoizJTJU0wnQsPTNTc1EXQuXUp/RUyzfQD/f0lxPc+JL+KbbY+mYiJ1JIiICIiAiIgIiICIiAiIgIiICIiAiIgIiIGJG6ziSZE608CY891x1GXpCcXIuvpgiby8j6mpPCyyn6ZK9kcGlVfuWx/a5JSyAGq/NcXNf8UkAScbLjuQW/pC0p+/7CT5C9L+U/f8AYSbPd4Jrjn+NcfTMRE1SREQEREBERAREQEREBERAREQEREBERAREQMSv1ntjLCVWu3c1eDOP5mVmE/1XK9I+sKxILmTtRr/39JA6meNn/GTUjZ8yYRxISTbp6zH5Rj3PH5S2GXWkr30s4P5SwlF6brsGA22GNGgcfX7S9nt/Gu+ONcfTMRE6EkREBERAREQEREBERAREQEREBERAREQEREDEqdcdzfcy2lX1fzGcfzZ/4Vy9ITmpA6g5k7WMg6k8LKsq1O2K9yB+sk9Prbft7SK4/oQf6yQqCXxlxu4Lv0vW3E48CWcoPR3p69wR+/7S/nufEyuXFN+22PpmIidSSIiAiIgIiICIiAiIgIiICIiAiIgIiICIiBiRNfpwxNiS5ipFkvVRYrH6BT/N+v8A7NLekofLfqP/ACXNRtmOXx+LL3jEeMUZ9HX+Zv6f+T6T0oDG5v1H/kudsbZE+Nwz1jDxit6foFVlNGweSSZaTAWZm2OOOM1jNJjMREskiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiIGImYgIiJARESQiIgIiICIiAiIgIiICIiB//Z
Image classification example
This playground primarily consists of autogenerated code that was produced as the model was trained by the Visual Studio Model Builder. We’ve added some custom code to consume the model and see how well it can ...