...
/Solution Review: Retraining a Machine Learning Model
Solution Review: Retraining a Machine Learning Model
Review the solution of retraining a machine learning model in ML.NET.
We'll cover the following...
We'll cover the following...
The complete solution is available in the following playground:
using Microsoft.ML;
using Microsoft.ML.Data;
using System;
using System.Linq;
using System.IO;
using System.Collections.Generic;
namespace ModelSavingExample.ConsoleApp
{
public partial class ModelSavingExample
{
/// <summary>
/// model input class for ModelSavingExample.
/// </summary>
#region model input class
public class ModelInput
{
[LoadColumn(0)]
[ColumnName(@"col0")]
public string Col0 { get; set; }
[LoadColumn(1)]
[ColumnName(@"col1")]
public float Col1 { get; set; }
}
#endregion
/// <summary>
/// model output class for ModelSavingExample.
/// </summary>
#region model output class
public class ModelOutput
{
[ColumnName(@"col0")]
public float[] Col0 { get; set; }
[ColumnName(@"col1")]
public uint Col1 { get; set; }
[ColumnName(@"Features")]
public float[] Features { get; set; }
[ColumnName(@"PredictedLabel")]
public float PredictedLabel { get; set; }
[ColumnName(@"Score")]
public float[] Score { get; set; }
}
#endregion
private static string MLNetModelPath = Path.GetFullPath("ModelSavingExample.mlnet");
public static readonly Lazy<PredictionEngine<ModelInput, ModelOutput>> PredictEngine = new Lazy<PredictionEngine<ModelInput, ModelOutput>>(() => CreatePredictEngine(), true);
private static PredictionEngine<ModelInput, ModelOutput> CreatePredictEngine()
{
var mlContext = new MLContext();
ITransformer mlModel = mlContext.Model.Load(MLNetModelPath, out var _);
return mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(mlModel);
}
public static IOrderedEnumerable<KeyValuePair<string, float>> PredictAllLabels(ModelInput input)
{
var predEngine = PredictEngine.Value;
var result = predEngine.Predict(input);
return GetSortedScoresWithLabels(result);
}
public static IOrderedEnumerable<KeyValuePair<string, float>> GetSortedScoresWithLabels(ModelOutput result)
{
var unlabeledScores = result.Score;
var labelNames = GetLabels(result);
Dictionary<string, float> labledScores = new Dictionary<string, float>();
for (int i = 0; i < labelNames.Count(); i++)
{
// Map the names to the predicted result score array
var labelName = labelNames.ElementAt(i);
labledScores.Add(labelName.ToString(), unlabeledScores[i]);
}
return labledScores.OrderByDescending(c => c.Value);
}
private static IEnumerable<string> GetLabels(ModelOutput result)
{
var schema = PredictEngine.Value.OutputSchema;
var labelColumn = schema.GetColumnOrNull("col1");
if (labelColumn == null)
{
throw new Exception("col1 column not found. Make sure the name searched for matches the name in the schema.");
}
// Key values contains an ordered array of the possible labels. This allows us to map the results to the correct label value.
var keyNames = new VBuffer<float>();
labelColumn.Value.GetKeyValues(ref keyNames);
return keyNames.DenseValues().Select(x => x.ToString());
}
public static ModelOutput Predict(ModelInput input)
{
var predEngine = PredictEngine.Value;
return predEngine.Predict(input);
}
}
}
Playground showing the complete solution with the code to train the model
Solving the challenge
First, we insert some code into the Train() method inside the ...