Improving Marker Detection
Learn how to improve the detection of fiduciary markers, like ArUco markers and AprilTags, using Python with OpenCV.
We can improve the detection of ArUco markers and AprilTags when using Python and OpenCV. This involves adjusting various parameters, preprocessing the images, and incorporating additional techniques.
Here are some suggestions of what we can do to improve the detection process:
Adjust detection parameters
OpenCV provides a set of default ArUco marker detection parameters, but we can customize them to improve detection. To create custom parameters, use the following:
detector_params = cv2.aruco.DetectorParameters_create()
We can then modify specific parameters. For example:
detector_params.adaptiveThreshConstant = 7 # Default is 7
detector_params.adaptiveThreshWinSizeStep = 4 # Default is 10
detector_params.minMarkerPerimeterRate = 0.01 # Default is 0.03
detector_params.maxMarkerPerimeterRate = 1.0 # Default is 4.0
detector_params.polygonalApproxAccuracyRate = 0.01 # Default is 0.03
These parameters can be adjusted based on our specific application and environment. We can experiment with different values to find ...