DataFrame
?DataFrame
is a commonly used 2-dimensional data structure. It is a table with columns and rows and is mostly used as an object in pandas.
DataFrame
can be formed as shown below.
It requires the pandas
library as shown below.
import pandas as pd
Below is a DataFrame
that contains countries that have been put in different groups and are given a different a_score
and b_score
.
Both scores are imaginary values for the purpose of this example.
import pandas as pda_score = [4, 5, 7, 8, 2, 3, 1, 6, 9, 10]b_score = [1, 2, 3, 4, 5, 6, 7, 10, 8, 9]country = ['Pakistan', 'USA', 'Canada', 'Brazil', 'India', 'Beligium', 'Malaysia', 'Peru', 'England', 'Scotland']groups = ['A','A','B','A','B','B','C','A','C','C']df = pd.DataFrame({'group':groups, 'country':country, 'a_score':a_score, 'b_score':b_score})print(df)
cumsum()
functionThe cumsum()
function allows the calculation of the cumulative sum.
The function prototype is as follows.
df.cumsum(axis = 1)
Any axis whose cumulative sum is to be taken.
The function returns the cumulative sum.
The following example takes the cumulative sum of the b_score
in the DataFrame
we formed above.
import pandas as pda_score = [4, 5, 7, 8, 2, 3, 1, 6, 9, 10]b_score = [1, 2, 3, 4, 5, 6, 7, 10, 8, 9]country = ['Pakistan', 'USA', 'Canada', 'Brazil', 'India', 'Beligium', 'Malaysia', 'Peru', 'England', 'Scotland']groups = ['A','A','B','A','B','B','C','A','C','C']df = pd.DataFrame({'group':groups, 'country':country, 'a_score':a_score, 'b_score':b_score})df['cumsum_b'] = df[['b_score','group']].groupby('group').cumsum()print(df)