Implementation of QuickSort in C++

QuickSort is a well-known sorting algorithm that implements the divide-and-conquer technique. It operates by selecting one of the array’s pivot elements and separating the other components into two subarrays based on whether they are smaller or bigger than the pivot. After that, the subarrays are sorted recursively until the entire array is sorted.

An array
1 of 3

Time complexity

On average, this approach has a time complexity of O(nlogn)O(n\log n), where nn is the number of array items. In the worst-case situation, when the pivot is repeatedly picked incorrectly, the time complexity can fall below O(n2)O(n2). Because of the recursive calls, the space complexity becomes O(logn)O(\log n).

Code

#include <iostream>
// Swapping elements
void swap_elements(int &number_1, int &number_2)
{
int temp_num = number_1;
number_1 = number_2;
number_2 = temp_num;
}
// Portioning the array and then returning index of the pivot
int partition_array(int array_value[], int lower_value, int higher_value)
{
int pivot_value = array_value[higher_value]; // Choose the rightmost element for the pivot
int i_1 = (lower_value - 1);
for (int j_1 = lower_value; j_1 <= higher_value - 1; j_1++)
{
if (array_value[j_1] <= pivot_value)
{
i_1++;
swap_elements(array_value[i_1], array_value[j_1]); // Swap array_value[i] and arrar_value[j]
}
}
swap_elements(array_value[i_1 + 1], array_value[higher_value]);
return (i_1 + 1); // Return the partition index
}
// Performing Quick-Sort
void quick_sort(int array_value[], int lower_value, int higher_value)
{
if (lower_value < higher_value)
{
int pivot_index = partition_array(array_value, lower_value, higher_value); // Partition the array
// Recursive calls to sort the sub-arrays
quick_sort(array_value, lower_value, pivot_index - 1);
quick_sort(array_value, pivot_index + 1, higher_value);
}
}
// Printing array
void print_array(int array_value[], int size_of_array)
{
for (int i = 0; i < size_of_array; i++)
{
std::cout << array_value[i] << " ";
}
std::cout << std::endl;
}
int main()
{
int array_values[] = { 9, 2, 5, 1, 7, 4, 8, 3 };
int size_of_array = sizeof(array_values) / sizeof(array_values[0]);
std::cout << "Original array: ";
print_array(array_values, size_of_array);
quick_sort(array_values, 0, size_of_array - 1);
std::cout << "Sorted array: ";
print_array(array_values, size_of_array);
return 0;
}

Code explanation

  • Lines 4–9: The swap_elements() function takes two integers as input and swaps their values. It is used to exchange components during the splitting step of QuickSort.

  • Lines 12–28: The function partition_array() accepts an array array_value, the lowest index lower_value, and the highest index higher_value as parameters. The pivot_value element is chosen as the rightmost element, array_value[higher_value]. It rearranges the array so that all elements less than or equal to the pivot come before it, and all elements greater than the pivot come after it. It returns the pivot element’s index after partitioning.

  • Lines 31–41: The function quick_sort() performs the QuickSort algorithm. It takes an array array_value, the lowest index lower_value, and the highest index higher_value. If the low index is less than the high index, it calls the partition_array() function to partition the array and get the pivot index. It recursively calls quick_sort() on the subarray before the pivot (from lower_value to pivot_index - 1) and the subarray after the pivot (from pivot_index + 1 to higher_value).

  • Lines 44–52: It prints all the elements of the array separated by a space and ends with a new line.

  • Lines 56–66: It initializes an array array_value with some values. It calculates the size of the array by dividing the total size_of_array of the array by the size_of_array of a single element. It then prints the original array, performs quick sort on the array, and prints the sorted array.

Free Resources

Copyright ©2024 Educative, Inc. All rights reserved