In Pandas, the loc
attribute of a DataFrame is used to access a group of rows and columns of a DataFrame by using their labels.
The loc
attribute takes the syntax below:
DataFrame.loc
The loc
attribute takes no parameter value. Rather, it takes the labels for the columns.
The loc
attribute returns the value(s) of the specified row or column label.
Let's create the DataFrame in the example below:
import pandas as pd# creating a list of objectsint_values = [1, 2, 2, 4, 5]text_values = ['alpha', 'beta', 'beta', 'delta', 'epsilon']float_values = [0.0, 0.25, 0.5, 0.75, 1.0]# creating a dataframe from the list of objectsdf = pd.DataFrame({"int_column": int_values, "text_column": text_values,"float_column": float_values}, index = ["Row 1", "Row 2", "Row 3", "Row 4", "Row 5"])# printing the dataframeprint("Data Frame:\n", df)# accessing the first and second row of the dataframeprint("\nloc for 1st and 2nd row:")print(df.loc[["Row 1", "Row 2"]])# accessing the int_column has a value of 2 and where the text_column has a value, "beta"print("\nFiltering DataFrame using loc:")print(df.loc[(df["int_column"] == 2) & (df["text_column"]=="beta")])
Line 1: We import the pandas
module.
Lines 4 and 6: We create a list of objects, text_values
, int_values
, and float_values
.
Line 9: We create a DataFrame using the list of objects we created with the pandas.DataFrame()
function. The name of the DataFrame is df
.
Line 13: We print the DataFrame, df
.
Line 17: We return the first and second row of the DataFrame using the loc
attribute and pass their labels as an index to the attribute.
Line 21: We access the columns int_column
where it has a value of 2
and the other column text_column
has a value, “beta”
.