What is the numpy.conjugate() function in NumPy?

Overview

The conjugate() function in NumPy is used to return, element-wise, the complex conjugate of an input array that is passed to it. This is done by simply changing the sign of the imaginary part of the input value.

Syntax

numpy.conjugate(x1, /, out=None, *, where=True)
Syntax for the "conjugate()" function in NumPy

Parameter values

The conj() function takes the following parameter values:

  • x: This represents the input array of complex values. This is a required parameter value.
  • out: This represents the location where the result is stored. This is an optional parameter value. 
  • where: This is the condition over which the input is broadcast. At a given location where this condition is True, the resulting array is set to the ufunc result. Otherwise, the resulting array retains its original value. This is an optional parameter value. 
  • kwargs: This represents the other keyword arguments. This is an optional parameter value. 

Return value

The conjugate() function returns a complex conjugate of the input value that has the same data type as the input value.

Example

import numpy as np
# creating an input array of complex values
x = np.array([1+2j, 2-3j, 1+5j])
# implementing the conjugate() function
myarray = np.conjugate(x)
print(x)
print(myarray)

Explanation

  • Line 1: We import the numpy module.
  • Line 4: We create an array x with complex values, using the array() function.
  • Line 7: We implement the conjugate() function on the input array. We assign the result to a variable called myarray.
  • Line 9: We print the variable x.
  • Line 10: We print the variable myarray.

Free Resources