-
Install TensorFlow: pip install tensorflow.
-
Import TensorFlow: import tensorflow as tf.
-
Load and preprocess data: Normalizing data, extracting features, and splitting it into training and testing sets.
-
Build the ML model: Define the architecture of your model. model = tf.keras.Sequential([ tf.keras.layers.Dense(128, activation=‘relu’, input_shape=(input_dim,)), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation=‘softmax’) )]
-
Compile the model: Configure the optimizer, loss function, and metrics. model.compile(optimizer=‘adam’, loss=‘categorical_crossentropy’, metrics=[‘accuracy’])
-
Train the model: Train the model on training data. model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_val, y_val))
-
Hyperparameter tuning: Adjust the number of epochs, batch size, learning rate, and other hyperparameters to improve the model.
-
Evaluate the Model: Once training is complete, evaluate the model. test_loss, test_accuracy = model.evaluate(X_test, y_test)
-
Make predictions: Use the trained model to make predictions on new data. predictions = model.predict(new_data)