Challenge Solution Review
In this lesson, we explain the solution to the last challenge lesson.
import sklearn.datasets as datasetsfrom sklearn.model_selection import train_test_split, GridSearchCVfrom sklearn.ensemble import GradientBoostingClassifierX, y = datasets.load_breast_cancer(return_X_y=True)train_x, test_x, train_y, test_y = train_test_split(X,y,test_size=0.2,random_state=42)gb = GradientBoostingClassifier(random_state=10)param_grid = [{"n_estimators": [1, 2, 4, 16, 32],"learning_rate": [0.05, 0.1, 0.2, 0.4],"min_samples_leaf": [1, 2, 4, 8],}]cv = GridSearchCV(gb, param_grid=param_grid, scoring="f1", n_jobs=4)cv.fit(train_x, train_y)print("The best F1-score is {}.".format(cv.best_score_))print("The parameter of best estimator is {}.".format(cv.best_params_))
Get hands-on with 1400+ tech skills courses.