Challenge Solution Review

In this lesson, we explain the solution to the last challenge lesson.

Press + to interact
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
import sklearn.metrics as metrics
df = pd.read_csv("./nonlinear.csv", sep=",", header=0)
y = df.pop("target").values
X = df
train_x, test_x, train_y, test_y = train_test_split(X,
y,
test_size=0.2,
random_state=42)
svc = SVC(kernel='rbf')
svc.fit(train_x, train_y)
pred_y = svc.predict(test_x)
f1 = metrics.f1_score(test_y, pred_y)
print("The F1 score is {}.".format(f1))

Get hands-on with 1300+ tech skills courses.