Challenge Solution Review
In this lesson, we explain the solution to the last challenge lesson.
import pandas as pdimport numpy as npfrom sklearn.model_selection import train_test_splitimport sklearn.preprocessing as preprocessingfrom sklearn.feature_selection import SelectKBestfrom sklearn.feature_selection import f_classiffrom sklearn.linear_model import LogisticRegressionimport sklearn.metrics as metricsdf = pd.read_csv("./challenge1.csv", sep=",", header=0)y = df.pop("target").valuesX = dfminmax = preprocessing.MinMaxScaler()minmax.fit(X)X_minmax = minmax.transform(X)sb = SelectKBest(f_classif, 10)sb.fit(X_minmax, y)X_stage2 = sb.transform(X_minmax)train_x, test_x, train_y, test_y = train_test_split(X_stage2,y,test_size=0.2,random_state=42)lr = LogisticRegression()lr.fit(train_x, train_y)pred_y = lr.predict(test_x)f1 = metrics.f1_score(test_y, pred_y)print("The F1-score is {}.".format(f1))
Get hands-on with 1400+ tech skills courses.