Making Predictions

Making predictions on the trained model.

We'll cover the following...

The predict function

Make predictions on the trained model.

Press + to interact
import numpy as np
import matplotlib.pyplot as plt
A = x[0] # pixel values for letter A
B = x[1] # pixel values for letter B
C = x[2] # pixel values for letter C
def predict(letter, x):
"""Computes predictions on the trained weights and bias"""
out_h1, out_h2, out_y = forward_propagation(letter, w1, w2, w3, b1, b2, b3)
print("softmax output:", out_y)
prediction = np.where(out_y == np.amax(out_y)) # returns the maximum value of array
print("Highest value of index:", prediction[1][0])
# plot the predicted label
plt.xlabel("Predicted label")
plt.imshow(x[prediction[1][0]].reshape(5, 6))
plt.show()
plt.savefig('output/predicted.png')
letter = A
# printing the target label
plt.imshow(letter.reshape(5, 6))
plt.xlabel("Target label")
plt.show()
plt.savefig('output/target.png')
predict(letter, x)

Explanation

...

Access this course and 1400+ top-rated courses and projects.