Solution Review: Hypertune Model Parameters
Learn about hypertuning the model parameters for the titanic dataset problem.
Solution
We will hypertune parameters related to model structure and model training. Letβs discuss each one of them below:
Optimizing hyperparameters related to the model structure
Hyperparameters | Value |
---|---|
Layers | 3 |
Nodes in the first hidden layer | 60 |
Nodes in the second hidden layer | 60 |
Activation in the first hidden layer | relu |
Activation in the second hidden layer | relu |
Dropout after the second layer | 0.5 |
Optimizing hyperparameters related to the model training
Hyperparameters | Value |
---|---|
optimizer |
adam |
loss |
binary_crossentropy |
epochs |
100 |
batch_size |
5 |
Run the solution below to observe the output.
Get hands-on with 1400+ tech skills courses.