Creation in NumPy
This lesson helps you learn how to create a NumPy array in different ways.
For using numpy, import the numpy library.
import numpy
Create an Array of Zeros
To create a numpy array containing zeros, write:
np.zeros(size)
To create an array of size 9 write:
np.zeros(9)
Here is how this array is stored in memory:
┌───┬───┬───┬───┬───┬───┬───┬───┬───┐
Z │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │
└───┴───┴───┴───┴───┴───┴───┴───┴───┘
import numpy as npZ=np.zeros(9)print(Z)
Create an Array of Ones
To create a numpy array containing ones, write:
np.ones(size)
.
To create an array of size 9 write:
np.ones(9)
Here is how this array is stored in memory:
┌───┬───┬───┬───┬───┬───┬───┬───┬───┐
Z │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │
└───┴───┴───┴───┴───┴───┴───┴───┴───┘
import numpy as npZ = np.ones(9)print(Z)
Create an Array of 0’s and 1’s
To create an array of zeros and ones, use np.array([1,0,0,0,0,0,1,0])
:
Here is how the array is stored in memory:
┌───┬───┬───┬───┬───┬───┬───┬───┬───┐
Z │ 1 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 1 │ 0 │
└───┴───┴───┴───┴───┴───┴───┴───┴───┘
import numpy as npZ = np.array([1,0,0,0,0,0,0,1,0])print(Z)
Create an Array of 2’s
To create an array of 2’s write: 2*np.ones(size)
.
To create an array of 2’s of size 9 write: 2*np.ones(9)
.
Here is how the array is stored in memory:
┌───┬───┬───┬───┬───┬───┬───┬───┬───┐
Z │ 2 │ 2 │ 2 │ 2 │ 2 │ 2 │ 2 │ 2 │ 2 │
└───┴───┴───┴───┴───┴───┴───┴───┴───┘
import numpy as npZ = 2*np.ones(9)print(Z)
Create a NumPy Array of any Length
To create an array of any length write: np.arange(size)
.
To create an array of size 9 write :
np.arange(9)
.
Here is how the array is stored in memory:
┌───┬───┬───┬───┬───┬───┬───┬───┬───┐
Z │ 0 │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │ 8 │
└───┴───┴───┴───┴───┴───┴───┴───┴───┘
import numpy as npZ = np.arange(9)print(Z)
Reshape a NumPy Array into a Column Vector
To reshape a numpy array,write: np.arange(size).reshape(size,1)
.
To reshape a numpy array into 9 rows and 1 column ,write: np.arange(9).reshape(9,1)
.
Here is how the array is stored is stored in memory:
┌───┐
│ 0 │
├───┤
│ 1 │
├───┤
│ 2 │
├───┤
│ 3 │
├───┤
Z │ 4 │
├───┤
│ 5 │
├───┤
│ 6 │
├───┤
│ 7 │
├───┤
│ 8 │
└───┘
import numpy as npZ = np.arange(9).reshape(9,1)print(Z)
Generate Array of Random Numbers and in Grid Format
To generate an array of random size, write: np.random.randint(0,size,(x_dimension,y_dimension))
.
To generate an array of random numbers from 0 to 9 and x dimension 3 and y dimension 3, write: np.random.randint(0,9,(3,3))
.
Here is how the array is stored in memory:
┌───┬───┬───┐
│ 4 │ 5 │ 7 │
├───┼───┼───┤
Z │ 0 │ 2 │ 6 │
├───┼───┼───┤
│ 8 │ 4 │ 0 │
└───┴───┴───┘
import numpy as npZ=np.random.randint(0,9,(3,3))print(Z)
Create a Linspace
To create evenly spaced numbers over a specified interval write :
np.linspace(start, stop, size)
To create a linspace of range 0-1 and size 5 , write : Z = np.linspace(0, 1, 5)
.
Here is how it is stored in memory:
┌──────┬──────┬──────┬──────┬──────┐
Z │ 0.00 │ 0.25 │ 0.50 │ 0.75 │ 1.00 │
└──────┴──────┴──────┴──────┴──────┘
import numpy as npZ = np.linspace(0, 1, 5)print(Z)
Create a Mesh Grid
To create a dense multi-dimensional “meshgrid”. ,write: np.mgrid[0:x_dimension,0:y_dimenion]
To create a grid in numpy of size(3*3),write: np.mgrid[0:3,0:3]
Here is how a mesh grid is stored in memory:
┌───┬───┬───┐ ┌───┬───┬───┐
│ 0 │ 0 │ 0 │ │ 0 │ 1 │ 2 │
├───┼───┼───┤ ├───┼───┼───┤
Z │ 1 │ 1 │ 1 │ │ 0 │ 1 │ 2 │
├───┼───┼───┤ ├───┼───┼───┤
│ 2 │ 2 │ 2 │ │ 0 │ 1 │ 2 │
└───┴───┴───┘ └───┴───┴───┘
import numpy as npZ=np.mgrid[0:3,0:3]print(Z)
Solve this Quiz!
How would you create a null vector of size 10?
import numpy as np
np.zeros(10)
import numpy as np
np.ones(10)
Now that we have learned to create a NumPy, let’s move on to the next lesson “Reshaping in NumPy”.