...

/

Pumping Theorem for Regular Languages

Pumping Theorem for Regular Languages

Learn about the pumping theorem for regular languages.

Infinite regular languages

We know that a decision algorithm can be developed to detect whether a DFA’s language is infinite. If a DFA accepts a string of length greater than or equal to pp, where pp is the number of states in the DFA, we know there is a cycle in an accepting path, so the language is infinite. Therefore, we could test all strings in Σ\Sigma^* of length p,p+1,p+2...p,p+1,p+2... for acceptance. The question is: when can we stop and give an answer? Since no cycle can contain more than pp states, we only have to test strings of the following pp lengths: p,p+1,p+2,...,2p2,2p1p,p+1,p+2,...,2p-2,2p-1.

If a language accepts a string of length 2p2p, we can ignore one of its cycles, which is no longer than length pp, meaning that a string whose length is in the range [p,2p1][p,2p-1] must also be accepted.

Remember: To determine by computer whether the language of a finite automaton is infinite, it is sufficient to test all strings in Σ+\Sigma^+ with lengths in the range [p,2p1][p,2p-1] ...

Access this course and 1400+ top-rated courses and projects.