Building Sparse Autoencoders
Learn to build sparse autoencoders for improved feature extraction and classification in anomaly detection tasks.
We'll cover the following
Sparse autoencoder construction
This lesson shows that sparse autoencoders can learn useful features and help improve classification tasks.
A sparse autoencoder described earlier is constructed here. The model is overcomplete with the encoding dimension equal to the input dimension.
The sparsity regularization is imposed on the encodings by setting activity_regularizer=tf.keras.regularizers.L1(l1=0.01)
in the model construction in the code below.
Get hands-on with 1400+ tech skills courses.