Flipping an Image

Try to solve the Flipping an Image problem.

Statement

Given that an image is represented by an (n×n)(n \times n) matrix containing 00s and 11s, flip and invert the image, and return the resultant image.

Horizontally flipping an image means that the mirror image of the matrix should be returned. Flipping [1,0,0][1, 0, 0] horizontally results in [0,0,1][0, 0, 1].

Inverting an image means that every 00 is replaced by 11, and every 11 is replaced by 00. Inverting [0,1,1][0, 1, 1] results in [1,0,0][1, 0, 0].

Constraints:

  • Image should be a square matrix.
  • 1≤n≤201 \leq n \leq 20
  • images[i][j] is either 00 or 11.

Examples