Random Forests with tidymodels
Learn how to train a random forest ensemble using tidymodels.
We'll cover the following...
Training a random forest
One advantage of the workflow approach of tidymodels
is the ability to change the machine learning algorithm quickly. The following code compares using a CART classification tree vs. a random classification forest.
Press + to interact
#================================================================================================# Specify a CART classification tree#titanic_model <- decision_tree() %>%set_engine("rpart") %>%set_mode("classification")#================================================================================================# Specify a random classification forest#titanic_model <- rand_forest(trees = 500) %>%set_engine("randomForest") %>%set_mode("classification")
The code above uses the rand_forest()
function from the parsnip
package to specify using the random forest algorithm with default hyperparameter values. The code further specifies using the randomForest
package’s algorithm to train a random ...