Distinct Edge Weights

Learn about the minimum spanning trees problem with distinct edge weights and its solution using various algorithms.

Suppose we are given a connected, undirected, and weighted graph. This is a graph G=(V,E)G = (V, E) together with a function w:ERw: E \rightarrow \mathbb{R} that assigns a real weight w(e)w(e) to each edge ee, which may be positive, negative, or zero. This chapter describes several algorithms to find the minimum spanning tree of GG, that is, the spanning tree TT that minimizes the function

w(T):=e ε Tw(e).w(T):=\underset{e \space\varepsilon\space T}{\sum}w(e).

Distinct edge weights

An annoying subtlety in the problem statement is that weighted graphs can ...