...

/

Solution Review: Maximum Sum Subarray

Solution Review: Maximum Sum Subarray

This review discusses the solution to the "Maximum Sum Subarray" challenge in detail.

We'll cover the following...

Solution (Kadane’s algorithm)

This algorithm takes a dynamic programming approach to solving the maximum subarray sum problem. Take a look at the algorithm.

Press + to interact
using System;
namespace chapter_2
{
class Solution
{
//Maximum Sum Subarray
static int maxSumArr(int []arr, int arrSize)
{
if (arrSize < 1)
{
return 0;
}
int currMax = arr[0];
int globalMax = arr[0];
for (int i = 1; i < arrSize; i++)
{
if (currMax < 0)
{
currMax = arr[i];
}
else
{
currMax += arr[i];
}
if (globalMax < currMax)
{
globalMax = currMax;
}
}
return globalMax;
}
static void Main(string[] args)
{
int []arr = { -4, 2, -5, 1, 2, 3, 6, -5, 1 };
int arrSize = arr.Length;
int maxSum = maxSumArr(arr, arrSize);
Console.WriteLine("Maximum contiguous sum is " + maxSum);
return;
}
}
}

The basic idea of “Kadane’s algorithm” is to scan the entire array. At each position, find the maximum sum of the subarray ending there. This is achieved by keeping a currMax for the current array index and a globalMax. The algorithm is as follows:

 ...