Logical Identities

Learn about logical identities and frequently used equivalent propositions.

Definition

Logically equivalent propositions can be substituted in place of each other while making arguments or proving results. Such frequently used equivalent propositions are called logical identities.

List of logical identities

Let’s summarize logical identities in the following table. The propositions shown in one row of the table are equivalent to each other. That is, Left \equiv Right.

Identity Number Left Right
1 ¬(pq)\neg \left(p\land q\right) ¬p¬q\neg p \lor \neg q
2 ¬(pq)\neg \left(p\lor q\right) ¬p¬q\neg p \land \neg q
3 pqp\Rightarrow q ¬q¬p\neg q \Rightarrow \neg p
4 ¬p¬q\neg p\Rightarrow \neg q qpq \Rightarrow p
5 pqp\Rightarrow q ¬pq\neg p \lor q
6 ¬(pq)\neg\left(p\Rightarrow q\right) p¬qp \land \neg q
7 pqp \Leftrightarrow q (pq)(qp)\left(p\Rightarrow q\right)\land \left(q\Rightarrow p\right)
8 pqp \Leftrightarrow q (¬pq)(¬qp)\left(\neg p\lor q\right)\land \left(\neg q\lor p\right)
9 ¬(pq)\neg\left(p \Leftrightarrow q\right) ¬(pq)¬(qp)\neg\left(p\Rightarrow q\right)\lor \neg\left(q\Rightarrow p\right)
10 ¬(pq)\neg\left(p \Leftrightarrow q\right) (p¬q)(q¬p)\left(p\land \neg q\right)\lor \left(q\land \neg p\right)
11 ¬(pq)\neg\left(p \Leftrightarrow q\right) pqp\oplus q

In the table above, the first two identities are DeMorgan’s laws. Particular fundamental identities need to be kept in mind. The following table contains more named identities or laws of propositional logic. Here “TT” stands true, and “FF” is false.

Number Equivalence or identity Name of identity
1 pTpp\land T \equiv p Identity Law
2 pFpp\lor F \equiv p Identity Law
3 pFFp\land F \equiv F Domination Law
4 pTTp\lor T \equiv T Domination Law
5 pppp\lor p \equiv p Idempotent Law
6 pppp\land p \equiv p Idempotent Law
7 pqqpp\land q \equiv q \land p Commutative Law
8 pqqpp\lor q \equiv q \lor p Commutative Law
9 pqqpp\Leftrightarrow q \equiv q \Leftrightarrow p Commutative Law
10 p(pq)pp \land \left(p \lor q\right) \equiv p Absorption Law
11 p(pq)pp \lor \left(p \land q\right) \equiv p Absorption Law
12 p¬pFp \land \neg p \equiv F Negation Law
13 p¬pTp \lor \neg p \equiv T Negation Law
14 ¬(¬p)p\neg\left(\neg p\right) \equiv p Double Negation Law
15 (pq)rp(qr)\left(p \land q\right)\land r \equiv p \land \left(q\land r\right) Associative Law
16 (pq)rp(qr)\left(p \lor q\right)\lor r \equiv p \lor \left(q\lor r\right) Associative Law
17 p(qr)(pq)(pr)p\land \left(q \lor r\right) \equiv \left(p\land q\right)\lor \left(p \land r\right) Distributive Law
18 p(qr)(pq)(pr)p\lor \left(q \land r\right) \equiv \left(p\lor q\right)\land \left(p \lor r\right) Distributive Law

Distributive laws

The identity numbers seventeen and eighteen in the table above are distributive laws. Let’s first discuss them intuitively and then, with the help of the truth table, examine why they hold.

Consider,

p(qr)(pq)(pr).p\land \left(q \lor r\right) \equiv \left(p\land q\right)\lor \left(p \land r\right).

If we look at the left-hand side, it will be false if pp is false. If pp is true, then the truth value of the left-hand side depends on qq and rr. If any of qq and rr are true, the expression is true.

This means, p(qr)p \land \left(q \lor r\right) is true if, pqp\land q is true, or prp \land r is true; and it is false, if pp is false, or both qq and rr are false. That is the right-hand side.

Now, let’s look at the truth table of this identity as follows:

(p,q,r)\left(p, q, r\right) qrq \lor r pqp\land q prp \land r p(qr)p\land \left(q\lor r\right) (pq)(pr)\left(p \land q\right)\lor\left(p \land r\right)
(T, T, T) T T T T T
(T, T, F) T T F T T
(T, F, T) T F T T T
(T, F, F) F F F F F
(F, T, T) T F F F F
(F, T, F) T F F F F
(F, F, T) T F F F F
(F, F, F) F F F F F

From the last two columns of the above truth table, it is evident that the identity under consideration holds.

Now consider,

p(qr)(pq)(pr)p\lor \left(q \land r\right) \equiv \left(p\lor q\right)\land \left(p \lor r\right)

If pp is true, it is easy to see that both the left-hand and right-hand sides are true regardless of the truth value of qq and rr. If pp is false, then both qq and rr have to be true to make the left-hand side true, which also makes the right-hand side true.

Now, let’s look at the truth table of this identity as follows:

(p,q,r)\left(p, q, r\right) qrq \land r pqp\lor q prp \lor r p(qr)p\lor \left(q\land r\right) (pq)(pr)\left(p \lor q\right)\land\left(p \lor r\right)
(T, T, T) T T T T T
(T, T, F) F T T T T
(T, F, T) F T T T T
(T, F, F) F T T T T
(F, T, T) T T T T T
(F, T, F) F T F F F
(F, F, T) F F T F F
(F, F, F) F F F F F

From the last two columns of the above truth table, it is evident that the identity under consideration holds.

Examples

Let’s look at some examples:


Consider,

  • tst_s: Tora is eating salad.
  • trt_r: Tora is eating rice.
  • tkt_k: Tora is eating steak.

Now,

  • p1=ts(trtk).p_1 = t_s \land \left(t_r \lor t_k\right).
  • p1p_1: Tora is eating salad, and she is eating rice or steak.
  • p2=(tstr)(tstk).p_2 = \left(t_s \land t_r\right) \lor \left(t_s \land t_k\right).
  • p2p_2: Tora is eating salad and rice, or salad and steak.
Tora having her dinner

By distributive law, we know that p1p2.p_1 \equiv p_2. So to express that, Tora is eating salad with rice or steak, it is logically equivalent to say p1p_1 or p2.p_2.

For the second example:


Consider,

  • dbd_b: Ivan is a deer with brown skin.
  • dgd_g: Ivan is a deer with golden skin.
  • dwd_w: Ivan is a deer with white skin.

Now,

  • p3=db(dgdw).p_3 = d_b \lor \left(d_g \land d_w\right).
  • p3p_3: Ivan is a deer with brown or, golden and white skin.
  • p4=(dbdg)(dbdw).p_4 = \left(d_b \lor d_g\right)\land \left(d_b \lor d_w\right).
  • p4p_4: Ivan is a deer with brown or golden skin, and brown or white skin.
Ivan

We know that p3p_3 and p4p_4 are equivalent through distributive law.