Mathematical Proofs: A Complex Scenario

Bolster your concepts of mathematical proofs by working on a complicated scenario.

We'll cover the following

Sarmad’s pet

Let’s take a more complex scenario as follows:

Scenario

Sarmad has a pet, or he has a motorcycle. If he has a motorcycle, then he is tired. If Sarmad does not have a motorcycle, (then) he uses a taxi. If Sarmad is not tired, then he is in the kitchen.

If Sarmad has a pet, then the pet is in the kitchen. If Sarmad and his pet are in the kitchen, (then) he offers tuna to his pet. If Sarmad offers tuna to his pet, (then) his pet is a cat. If Sarmad does not have a pet, then he is lonely.

Given that:

Sarmad is not lonely, or he is not using a taxi.

And Sarmad is not tired.

Can we conclude from this information that, Sarmad’s pet is a cat, and the pet is in the kitchen, and Sarmad offers tuna to his pet?

Formalization

Let’s represent different propositions in the given scenario as follows:

  • q1q_1: Sarmad has a pet.
  • q2q_2: Sarmad’s pet is a cat.
  • q3q_3: Sarmad has a motorcycle.
  • q4q_4: Sarmad is tired.
  • q5q_5: Sarmad uses a taxi.
  • q6q_6: Sarmad is in the kitchen.
  • q7q_7: The pet is in the kitchen.
  • q8q_8: Sarmad offers tuna to his pet.
  • q9q_9: Sarmad is lonely.

Hypotheses

H1:amp;  q1q3amp;:amp; Sarmad has a pet, or he has a motorcycle.H2:amp;  q3q4amp;:amp; If Sarmad has a motorcycle, then he is tired.H3:amp;  ¬q3q5amp;:amp; If Sarmad does not have a motorcycle, (then) he uses a taxi.H4:amp;  ¬q4q6amp;:amp; If Sarmad is not tired, then he is in the kitchen.H5:amp;  q1q7amp;:amp; If Sarmad has a pet, then the pet is in the kitchen.H6:amp;  (q6q7)q8amp;:amp; If Sarmad and his pet are in the kitchen, (then) he offers tuna to his pet.H7:amp;  q8q2amp;:amp; If Sarmad offers tuna to his pet, (then) his pet is a cat.H8:amp;  ¬q1q9amp;:amp; If Sarmad does not have a pet, then he is lonely.H9:amp;  ¬q9¬q5amp;:amp; Sarmad is not lonely, or he is not using a taxi.H10:amp;  ¬q4amp;:amp; Sarmad is not tired.\begin{aligned}{} H_1 :&\; q_1 \lor q_3 &:& \text{ Sarmad has a pet, or he has a motorcycle.}\\ H_2 :&\; q_3 \Rightarrow q_4 &: &\text{ If Sarmad has a motorcycle, then he is tired.}\\ H_3:&\; \neg q_3 \Rightarrow q_5 &: &\text{ If Sarmad does not have a motorcycle, (then) he uses a taxi.}\\ H_4:&\; \neg q_4 \Rightarrow q_6 &:& \text{ If Sarmad is not tired, then he is in the kitchen.}\\ H_5:&\; q_1 \Rightarrow q_7 &:& \text{ If Sarmad has a pet, then the pet is in the kitchen.}\\ H_6:&\; (q_6 \land q_7)\Rightarrow q_8 &:& \text{ If Sarmad and his pet are in the kitchen, (then) he offers tuna to his pet.}\\ H_7:&\; q_8 \Rightarrow q_2 &:& \text{ If Sarmad offers tuna to his pet, (then) his pet is a cat.}\\ H_8:&\; \neg q_1 \Rightarrow q_9 &:& \text{ If Sarmad does not have a pet, then he is lonely.}\\ H_9:&\; \neg q_9 \lor \neg q_5 &:& \text{ Sarmad is not lonely, or he is not using a taxi.}\\ H_{10}:&\; \neg q_4 &:& \text{ Sarmad is not tired.} \end{aligned}

Conclusion

  • C:      q2q7q8      :C:\;\;\; q_2 \land q_7 \land q_8 \;\;\;: Sarmad’s pet is a cat, and the pet is in the kitchen, and Sarmad offers tuna to his pet.

We first apply the conjunction rule on H3H_3 and H8H_8 to conclude C1C_1.

  • C1:      (¬q3q5)(¬q1q9).C_1: \;\;\; (\neg q_3 \Rightarrow q_5) \land (\neg q_1 \Rightarrow q_9).

<br>

If we apply destructive dilemma using C1C_1 and H9H_9, we can conclude; ¬(¬q3)¬(¬q1).\neg(\neg q_3)\lor \neg(\neg q_1). Which is equivalent to, q3q1.q_3\lor q_1.

  • C2:      q3q1.C_2: \;\;\; q_3\lor q_1.

<br>

Using modus ponens, we can conclude q6q_6 from H4H_4 and H10.H_{10}.

  • C3:      q6.C_3: \;\;\; q_6.

<br>

Using modus tollens, we can conclude ¬q3\neg q_3 from H2H_2 and H10.H_{10}.

  • C4:      ¬q3.C_4: \;\;\; \neg q_3.

<br>

Applying disjunctive syllogism on C2C_2 and C4C_4, we conclude q1q_1.

  • C5:      q1.C_5: \;\;\; q_1.

<br>

Using modus ponens, we can conclude q7q_7 from C5C_5 and H5.H_5.

  • C6:      q7.C_6: \;\;\; q_7.

<br>

We can use the conjunction rule on C3C_3 and C6C_6 to get the following conclusion.

  • C7:      q6q7.C_7:\;\;\; q_6 \land q_7.

<br>

Using modus ponens, we can conclude q8q_8 from H6H_6 and C7C_7

  • C8:      q8.C_8:\;\;\; q_8.

<br>

Now, we get q2q_2 from C8C_8 and H7H_7 using modus ponens.

  • C9:      q2.C_9 :\;\;\; q_2.

<br>

We can use conjunction on C9C_9 and C6C_6 and then take the conjunction with C8C_8 to reach the following conclusion:

  • C:      q2q7q8.C :\;\;\; q_2 \land q_7 \land q_8.

        H3:      ¬q3q5        H8:      ¬q1q9C1:      (¬q3q5)(¬q1q9)\begin{aligned}{} &\;\;\;\;H_3:\;\;\; \neg q_3 \Rightarrow q_5\\ &\;\;\;\;H_8:\;\;\; \neg q_1 \Rightarrow q_9\\ &\rule[0 pt]{150 pt}{0.5 pt}\\ &\therefore C_1:\;\;\;(\neg q_3 \Rightarrow q_5)\land (\neg q_1 \Rightarrow q_9) \end{aligned}

        C1:      (¬q3q5)(¬q1q9)        H9:      ¬q9¬q5C2:      ¬(¬q3)¬(¬q1)\begin{aligned}{} &\;\;\;\;C_1:\;\;\;(\neg q_3 \Rightarrow q_5)\land (\neg q_1 \Rightarrow q_9)\\ &\;\;\;\;H_9:\;\;\; \neg q_9 \lor \neg q_5\\ &\rule[0 pt]{150 pt}{0.5 pt}\\ &\therefore C_2:\;\;\;\neg(\neg q_3) \lor \neg ( \neg q_1) \end{aligned}

        H4:      ¬q4q6      H10:      ¬q4C3:      q6\begin{aligned}{} &\;\;\;\;H_4:\;\;\; \neg q_4 \Rightarrow q_6\\ &\;\;\;H_{10}:\;\;\; \neg q_4 \\ &\rule[0 pt]{85 pt}{0.5 pt}\\ &\therefore C_3:\;\;\;q_6 \end{aligned}

        H2:      q3q4      H10:      ¬q4C4:      ¬q3\begin{aligned}{} &\;\;\;\;H_2:\;\;\; q_3 \Rightarrow q_4\\ &\;\;\;H_{10}:\;\;\; \neg q_4 \\ &\rule[0 pt]{85 pt}{0.5 pt}\\ &\therefore C_4:\;\;\; \neg q_3 \end{aligned}

        C2:      q3q1        C4:      ¬q3C5:      q1\begin{aligned}{} &\;\;\;\;C_2:\;\;\; q_3 \lor q_1\\ &\;\;\;\;C_4:\;\;\; \neg q_3 \\ &\rule[0 pt]{85 pt}{0.5 pt}\\ &\therefore C_5:\;\;\;q_1 \end{aligned}

        H5:      q1q7        C5:      q1C6:      q7\begin{aligned}{} &\;\;\;\;H_5:\;\;\; q_1 \Rightarrow q_7\\ &\;\;\;\;C_5:\;\;\; q_1 \\ &\rule[0 pt]{85 pt}{0.5 pt}\\ &\therefore C_6:\;\;\;q_7 \end{aligned}

        C3:      q6        C6:      q7C7:      q6q7\begin{aligned}{} &\;\;\;\;C_3:\;\;\; q_6\\ &\;\;\;\;C_6:\;\;\; q_7 \\ &\rule[0 pt]{85 pt}{0.5 pt}\\ &\therefore C_7:\;\;\;q_6 \land q_7 \end{aligned}

        H6:      (q6q7)q8        C7:      q6q7C8:      q8\begin{aligned}{} &\;\;\;\;H_6:\;\;\; (q_6 \land q_7) \Rightarrow q_8\\ &\;\;\;\;C_7:\;\;\; q_6 \land q_7 \\ &\rule[0 pt]{85 pt}{0.5 pt}\\ &\therefore C_8:\;\;\;q_8 \end{aligned}

        H7:      q8q2        C8:      q8C9:      q2\begin{aligned}{} &\;\;\;\;H_7:\;\;\; q_8 \Rightarrow q_2\\ &\;\;\;\;C_8:\;\;\; q_8 \\ &\rule[0 pt]{85 pt}{0.5 pt}\\ &\therefore C_9:\;\;\;q_2 \end{aligned}

        C9:      q2        C6:      q7        C8:      q8C9:      q2q7q8\begin{aligned}{} &\;\;\;\;C_9:\;\;\; q_2\\ &\;\;\;\;C_6:\;\;\; q_7 \\ &\;\;\;\;C_8:\;\;\; q_8 \\ &\rule[0 pt]{85 pt}{0.5 pt}\\ &\therefore C_9:\;\;\;q_2 \land q_7 \land q_8 \end{aligned}